LLCC506 commited on
Commit
d69fa11
·
verified ·
1 Parent(s): 78ca7ab

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/image4.jpg filter=lfs diff=lfs merge=lfs -text
38
+ examples/image5.jpg filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
config.json ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "internlm/internlm2-chat-1_8b",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "InternLM2ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
23
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
24
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
25
+ },
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bias": false,
29
+ "bos_token_id": 1,
30
+ "chunk_size_feed_forward": 0,
31
+ "cross_attention_hidden_size": null,
32
+ "decoder_start_token_id": null,
33
+ "diversity_penalty": 0.0,
34
+ "do_sample": false,
35
+ "early_stopping": false,
36
+ "encoder_no_repeat_ngram_size": 0,
37
+ "eos_token_id": 2,
38
+ "exponential_decay_length_penalty": null,
39
+ "finetuning_task": null,
40
+ "forced_bos_token_id": null,
41
+ "forced_eos_token_id": null,
42
+ "hidden_act": "silu",
43
+ "hidden_size": 2048,
44
+ "id2label": {
45
+ "0": "LABEL_0",
46
+ "1": "LABEL_1"
47
+ },
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": 8192,
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": false,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "max_position_embeddings": 32768,
59
+ "min_length": 0,
60
+ "model_type": "internlm2",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 16,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 24,
66
+ "num_key_value_heads": 8,
67
+ "num_return_sequences": 1,
68
+ "output_attentions": false,
69
+ "output_hidden_states": false,
70
+ "output_scores": false,
71
+ "pad_token_id": 2,
72
+ "prefix": null,
73
+ "problem_type": null,
74
+ "pruned_heads": {},
75
+ "remove_invalid_values": false,
76
+ "repetition_penalty": 1.0,
77
+ "return_dict": true,
78
+ "return_dict_in_generate": false,
79
+ "rms_norm_eps": 1e-05,
80
+ "rope_scaling": {
81
+ "factor": 2.0,
82
+ "type": "dynamic"
83
+ },
84
+ "rope_theta": 1000000,
85
+ "sep_token_id": null,
86
+ "suppress_tokens": null,
87
+ "task_specific_params": null,
88
+ "temperature": 1.0,
89
+ "tf_legacy_loss": false,
90
+ "tie_encoder_decoder": false,
91
+ "tie_word_embeddings": false,
92
+ "tokenizer_class": null,
93
+ "top_k": 50,
94
+ "top_p": 1.0,
95
+ "torch_dtype": "bfloat16",
96
+ "torchscript": false,
97
+ "transformers_version": "4.37.2",
98
+ "typical_p": 1.0,
99
+ "use_bfloat16": true,
100
+ "use_cache": true,
101
+ "vocab_size": 92553
102
+ },
103
+ "max_dynamic_patch": 12,
104
+ "min_dynamic_patch": 1,
105
+ "model_type": "internvl_chat",
106
+ "ps_version": "v2",
107
+ "select_layer": -1,
108
+ "template": "internlm2-chat",
109
+ "torch_dtype": "bfloat16",
110
+ "use_backbone_lora": 0,
111
+ "use_llm_lora": 0,
112
+ "use_thumbnail": true,
113
+ "vision_config": {
114
+ "architectures": [
115
+ "InternVisionModel"
116
+ ],
117
+ "attention_dropout": 0.0,
118
+ "drop_path_rate": 0.0,
119
+ "dropout": 0.0,
120
+ "hidden_act": "gelu",
121
+ "hidden_size": 1024,
122
+ "image_size": 448,
123
+ "initializer_factor": 1.0,
124
+ "initializer_range": 0.02,
125
+ "intermediate_size": 4096,
126
+ "layer_norm_eps": 1e-06,
127
+ "model_type": "intern_vit_6b",
128
+ "norm_type": "layer_norm",
129
+ "num_attention_heads": 16,
130
+ "num_channels": 3,
131
+ "num_hidden_layers": 24,
132
+ "output_attentions": false,
133
+ "output_hidden_states": false,
134
+ "patch_size": 14,
135
+ "qk_normalization": false,
136
+ "qkv_bias": true,
137
+ "return_dict": true,
138
+ "torch_dtype": "bfloat16",
139
+ "transformers_version": "4.37.2",
140
+ "use_bfloat16": true,
141
+ "use_flash_attn": true
142
+ }
143
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['InternLM2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
examples/image1.jpg ADDED
examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
examples/image3.jpg ADDED
examples/image4.jpg ADDED

Git LFS Details

  • SHA256: d7e872586078b83a8ae8476f7679c56df5a4f476e135d118585387b8b522ffcd
  • Pointer size: 131 Bytes
  • Size of remote file: 373 kB
examples/image5.jpg ADDED

Git LFS Details

  • SHA256: 5d2bb64039404d54684c6d276361f64668a9abc5684a5d71d98197608345d173
  • Pointer size: 131 Bytes
  • Size of remote file: 112 kB
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d35fab283a93031e6b88d933410e14df782eb54ae80d60715e5e0ab3e65e00b
3
+ size 4681069792
modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ # output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ self.config.attn_implementation = 'eager'
812
+ # if not has_flash_attn:
813
+ # self.config.attn_implementation = 'eager'
814
+ # print('Warning: Flash attention is not available, using eager attention instead.')
815
+
816
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
817
+
818
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
819
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
820
+
821
+ self.gradient_checkpointing = False
822
+ # Initialize weights and apply final processing
823
+ self.post_init()
824
+
825
+ def get_input_embeddings(self):
826
+ return self.tok_embeddings
827
+
828
+ def set_input_embeddings(self, value):
829
+ self.tok_embeddings = value
830
+
831
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
832
+ # create causal mask
833
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
834
+ combined_attention_mask = None
835
+ if input_shape[-1] > 1:
836
+ combined_attention_mask = _make_causal_mask(
837
+ input_shape,
838
+ inputs_embeds.dtype,
839
+ device=inputs_embeds.device,
840
+ past_key_values_length=past_key_values_length,
841
+ )
842
+
843
+ if attention_mask is not None:
844
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
845
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
846
+ inputs_embeds.device
847
+ )
848
+ combined_attention_mask = (
849
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
850
+ )
851
+
852
+ return combined_attention_mask
853
+
854
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
855
+ def forward(
856
+ self,
857
+ input_ids: torch.LongTensor = None,
858
+ attention_mask: Optional[torch.Tensor] = None,
859
+ position_ids: Optional[torch.LongTensor] = None,
860
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
861
+ inputs_embeds: Optional[torch.FloatTensor] = None,
862
+ use_cache: Optional[bool] = None,
863
+ output_attentions: Optional[bool] = None,
864
+ output_hidden_states: Optional[bool] = None,
865
+ return_dict: Optional[bool] = None,
866
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
867
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
868
+ output_hidden_states = (
869
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
870
+ )
871
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
872
+
873
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
874
+
875
+ if self.config.attn_implementation == 'flash_attention_2':
876
+ _import_flash_attn()
877
+
878
+ # retrieve input_ids and inputs_embeds
879
+ if input_ids is not None and inputs_embeds is not None:
880
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
881
+ elif input_ids is not None:
882
+ batch_size, seq_length = input_ids.shape[:2]
883
+ elif inputs_embeds is not None:
884
+ batch_size, seq_length = inputs_embeds.shape[:2]
885
+ else:
886
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
887
+
888
+ seq_length_with_past = seq_length
889
+ past_key_values_length = 0
890
+ if past_key_values is not None:
891
+ past_key_values_length = past_key_values[0][0].shape[2]
892
+ seq_length_with_past = seq_length_with_past + past_key_values_length
893
+
894
+ if position_ids is None:
895
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
896
+ position_ids = torch.arange(
897
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
898
+ )
899
+ position_ids = position_ids.unsqueeze(0)
900
+
901
+ if inputs_embeds is None:
902
+ inputs_embeds = self.tok_embeddings(input_ids)
903
+
904
+ if self.config.attn_implementation == 'flash_attention_2':
905
+ # 2d mask is passed through the layers
906
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
907
+ else:
908
+ if attention_mask is None:
909
+ attention_mask = torch.ones(
910
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
911
+ )
912
+ attention_mask = self._prepare_decoder_attention_mask(
913
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
914
+ )
915
+
916
+ # embed positions
917
+ hidden_states = inputs_embeds
918
+
919
+ if self.gradient_checkpointing and self.training:
920
+ if use_cache:
921
+ logger.warning_once(
922
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
923
+ )
924
+ use_cache = False
925
+
926
+ # decoder layers
927
+ all_hidden_states = () if output_hidden_states else None
928
+ all_self_attns = () if output_attentions else None
929
+ next_decoder_cache = () if use_cache else None
930
+
931
+ for idx, decoder_layer in enumerate(self.layers):
932
+ if output_hidden_states:
933
+ all_hidden_states += (hidden_states,)
934
+
935
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
936
+
937
+ if self.gradient_checkpointing and self.training:
938
+
939
+ def create_custom_forward(module):
940
+ def custom_forward(*inputs):
941
+ # None for past_key_value
942
+ return module(*inputs, output_attentions, None)
943
+
944
+ return custom_forward
945
+
946
+ layer_outputs = torch.utils.checkpoint.checkpoint(
947
+ create_custom_forward(decoder_layer),
948
+ hidden_states,
949
+ attention_mask,
950
+ position_ids,
951
+ None,
952
+ )
953
+ else:
954
+ layer_outputs = decoder_layer(
955
+ hidden_states,
956
+ attention_mask=attention_mask,
957
+ position_ids=position_ids,
958
+ past_key_value=past_key_value,
959
+ output_attentions=output_attentions,
960
+ use_cache=use_cache,
961
+ )
962
+
963
+ hidden_states = layer_outputs[0]
964
+
965
+ if use_cache:
966
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
967
+
968
+ if output_attentions:
969
+ all_self_attns += (layer_outputs[1],)
970
+
971
+ hidden_states = self.norm(hidden_states)
972
+
973
+ # add hidden states from the last decoder layer
974
+ if output_hidden_states:
975
+ all_hidden_states += (hidden_states,)
976
+
977
+ next_cache = next_decoder_cache if use_cache else None
978
+ if not return_dict:
979
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
980
+ return BaseModelOutputWithPast(
981
+ last_hidden_state=hidden_states,
982
+ past_key_values=next_cache,
983
+ hidden_states=all_hidden_states,
984
+ attentions=all_self_attns,
985
+ )
986
+
987
+
988
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
989
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
990
+ _auto_class = 'AutoModelForCausalLM'
991
+
992
+ _tied_weights_keys = ['output.weight']
993
+
994
+ def __init__(self, config):
995
+ super().__init__(config)
996
+ self.model = InternLM2Model(config)
997
+ self.vocab_size = config.vocab_size
998
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
999
+
1000
+ # Initialize weights and apply final processing
1001
+ self.post_init()
1002
+
1003
+ def get_input_embeddings(self):
1004
+ return self.model.tok_embeddings
1005
+
1006
+ def set_input_embeddings(self, value):
1007
+ self.model.tok_embeddings = value
1008
+
1009
+ def get_output_embeddings(self):
1010
+ return self.output
1011
+
1012
+ def set_output_embeddings(self, new_embeddings):
1013
+ self.output = new_embeddings
1014
+
1015
+ def set_decoder(self, decoder):
1016
+ self.model = decoder
1017
+
1018
+ def get_decoder(self):
1019
+ return self.model
1020
+
1021
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1022
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1023
+ def forward(
1024
+ self,
1025
+ input_ids: torch.LongTensor = None,
1026
+ attention_mask: Optional[torch.Tensor] = None,
1027
+ position_ids: Optional[torch.LongTensor] = None,
1028
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1029
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1030
+ labels: Optional[torch.LongTensor] = None,
1031
+ use_cache: Optional[bool] = None,
1032
+ output_attentions: Optional[bool] = None,
1033
+ output_hidden_states: Optional[bool] = None,
1034
+ return_dict: Optional[bool] = None,
1035
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1036
+ r"""
1037
+ Args:
1038
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1039
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1040
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1041
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1042
+
1043
+ Returns:
1044
+
1045
+ Example:
1046
+
1047
+ ```python
1048
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1049
+
1050
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1051
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1052
+
1053
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1054
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1055
+
1056
+ >>> # Generate
1057
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1058
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1059
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1060
+ ```"""
1061
+
1062
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1063
+ output_hidden_states = (
1064
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1065
+ )
1066
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1067
+
1068
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1069
+ outputs = self.model(
1070
+ input_ids=input_ids,
1071
+ attention_mask=attention_mask,
1072
+ position_ids=position_ids,
1073
+ past_key_values=past_key_values,
1074
+ inputs_embeds=inputs_embeds,
1075
+ use_cache=use_cache,
1076
+ output_attentions=output_attentions,
1077
+ output_hidden_states=output_hidden_states,
1078
+ return_dict=return_dict,
1079
+ )
1080
+
1081
+ hidden_states = outputs[0]
1082
+ logits = self.output(hidden_states)
1083
+ logits = logits.float()
1084
+
1085
+ loss = None
1086
+ if labels is not None:
1087
+ # Shift so that tokens < n predict n
1088
+ shift_logits = logits[..., :-1, :].contiguous()
1089
+ shift_labels = labels[..., 1:].contiguous()
1090
+ # Flatten the tokens
1091
+ loss_fct = CrossEntropyLoss()
1092
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1093
+ shift_labels = shift_labels.view(-1)
1094
+ # Enable model parallelism
1095
+ shift_labels = shift_labels.to(shift_logits.device)
1096
+ loss = loss_fct(shift_logits, shift_labels)
1097
+
1098
+ if not return_dict:
1099
+ output = (logits,) + outputs[1:]
1100
+ return (loss,) + output if loss is not None else output
1101
+
1102
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1103
+ output = CausalLMOutputWithPast(
1104
+ loss=loss,
1105
+ logits=logits,
1106
+ past_key_values=outputs.past_key_values,
1107
+ hidden_states=outputs.hidden_states,
1108
+ attentions=outputs.attentions,
1109
+ )
1110
+ output['logits'] = output['logits'].to(device)
1111
+ return output
1112
+
1113
+ def prepare_inputs_for_generation(
1114
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1115
+ ):
1116
+ if past_key_values is not None:
1117
+ past_length = past_key_values[0][0].shape[2]
1118
+
1119
+ # Some generation methods already pass only the last input ID
1120
+ if input_ids.shape[1] > past_length:
1121
+ remove_prefix_length = past_length
1122
+ else:
1123
+ # Default to old behavior: keep only final ID
1124
+ remove_prefix_length = input_ids.shape[1] - 1
1125
+
1126
+ input_ids = input_ids[:, remove_prefix_length:]
1127
+
1128
+ position_ids = kwargs.get('position_ids', None)
1129
+ if attention_mask is not None and position_ids is None:
1130
+ # create position_ids on the fly for batch generation
1131
+ position_ids = attention_mask.long().cumsum(-1) - 1
1132
+ position_ids.masked_fill_(attention_mask == 0, 1)
1133
+ if past_key_values:
1134
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1135
+
1136
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1137
+ if inputs_embeds is not None and past_key_values is None:
1138
+ model_inputs = {'inputs_embeds': inputs_embeds}
1139
+ else:
1140
+ model_inputs = {'input_ids': input_ids}
1141
+
1142
+ model_inputs.update(
1143
+ {
1144
+ 'position_ids': position_ids,
1145
+ 'past_key_values': past_key_values,
1146
+ 'use_cache': kwargs.get('use_cache'),
1147
+ 'attention_mask': attention_mask,
1148
+ }
1149
+ )
1150
+ return model_inputs
1151
+
1152
+ @staticmethod
1153
+ def _reorder_cache(past_key_values, beam_idx):
1154
+ reordered_past = ()
1155
+ for layer_past in past_key_values:
1156
+ reordered_past += (
1157
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1158
+ )
1159
+ return reordered_past
1160
+
1161
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1162
+ if tokenizer.add_bos_token:
1163
+ prompt = ''
1164
+ else:
1165
+ prompt = tokenizer.bos_token
1166
+ if meta_instruction:
1167
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1168
+ for record in history:
1169
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1170
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1171
+ return tokenizer([prompt], return_tensors='pt')
1172
+
1173
+ @torch.no_grad()
1174
+ def chat(
1175
+ self,
1176
+ tokenizer,
1177
+ query: str,
1178
+ history: List[Tuple[str, str]] = [],
1179
+ streamer: Optional[BaseStreamer] = None,
1180
+ max_new_tokens: int = 1024,
1181
+ do_sample: bool = True,
1182
+ temperature: float = 0.8,
1183
+ top_p: float = 0.8,
1184
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1185
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1186
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1187
+ **kwargs,
1188
+ ):
1189
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1190
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1191
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1192
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1193
+ outputs = self.generate(
1194
+ **inputs,
1195
+ streamer=streamer,
1196
+ max_new_tokens=max_new_tokens,
1197
+ do_sample=do_sample,
1198
+ temperature=temperature,
1199
+ top_p=top_p,
1200
+ eos_token_id=eos_token_id,
1201
+ **kwargs,
1202
+ )
1203
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1204
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1205
+ response = response.split('<|im_end|>')[0]
1206
+ history = history + [(query, response)]
1207
+ return response, history
1208
+
1209
+ @torch.no_grad()
1210
+ def stream_chat(
1211
+ self,
1212
+ tokenizer,
1213
+ query: str,
1214
+ history: List[Tuple[str, str]] = [],
1215
+ max_new_tokens: int = 1024,
1216
+ do_sample: bool = True,
1217
+ temperature: float = 0.8,
1218
+ top_p: float = 0.8,
1219
+ **kwargs,
1220
+ ):
1221
+ """
1222
+ Return a generator in format: (response, history)
1223
+ Eg.
1224
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1225
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1226
+ """
1227
+ if BaseStreamer is None:
1228
+ raise ModuleNotFoundError(
1229
+ 'The version of `transformers` is too low. Please make sure '
1230
+ 'that you have installed `transformers>=4.28.0`.'
1231
+ )
1232
+
1233
+ response_queue = queue.Queue(maxsize=20)
1234
+
1235
+ class ChatStreamer(BaseStreamer):
1236
+ def __init__(self, tokenizer) -> None:
1237
+ super().__init__()
1238
+ self.tokenizer = tokenizer
1239
+ self.queue = response_queue
1240
+ self.query = query
1241
+ self.history = history
1242
+ self.response = ''
1243
+ self.cache = []
1244
+ self.received_inputs = False
1245
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1246
+
1247
+ def put(self, value):
1248
+ if len(value.shape) > 1 and value.shape[0] > 1:
1249
+ raise ValueError('ChatStreamer only supports batch size 1')
1250
+ elif len(value.shape) > 1:
1251
+ value = value[0]
1252
+
1253
+ if not self.received_inputs:
1254
+ # The first received value is input_ids, ignore here
1255
+ self.received_inputs = True
1256
+ return
1257
+
1258
+ self.cache.extend(value.tolist())
1259
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1260
+ if token.strip() != '<|im_end|>':
1261
+ self.response = self.response + token
1262
+ history = self.history + [(self.query, self.response)]
1263
+ self.queue.put((self.response, history))
1264
+ self.cache = []
1265
+ else:
1266
+ self.end()
1267
+
1268
+ def end(self):
1269
+ self.queue.put(None)
1270
+
1271
+ def stream_producer():
1272
+ return self.chat(
1273
+ tokenizer=tokenizer,
1274
+ query=query,
1275
+ streamer=ChatStreamer(tokenizer=tokenizer),
1276
+ history=history,
1277
+ max_new_tokens=max_new_tokens,
1278
+ do_sample=do_sample,
1279
+ temperature=temperature,
1280
+ top_p=top_p,
1281
+ **kwargs,
1282
+ )
1283
+
1284
+ def consumer():
1285
+ producer = threading.Thread(target=stream_producer)
1286
+ producer.start()
1287
+ while True:
1288
+ res = response_queue.get()
1289
+ if res is None:
1290
+ return
1291
+ yield res
1292
+
1293
+ return consumer()
1294
+
1295
+
1296
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1297
+ @add_start_docstrings(
1298
+ """
1299
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1300
+
1301
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1302
+ as other causal models (e.g. GPT-2) do.
1303
+
1304
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1305
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1306
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1307
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1308
+ each row of the batch).
1309
+ """,
1310
+ InternLM2_START_DOCSTRING,
1311
+ )
1312
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1313
+ def __init__(self, config):
1314
+ super().__init__(config)
1315
+ self.num_labels = config.num_labels
1316
+ self.model = InternLM2Model(config)
1317
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1318
+
1319
+ # Initialize weights and apply final processing
1320
+ self.post_init()
1321
+
1322
+ def get_input_embeddings(self):
1323
+ return self.model.tok_embeddings
1324
+
1325
+ def set_input_embeddings(self, value):
1326
+ self.model.tok_embeddings = value
1327
+
1328
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1329
+ def forward(
1330
+ self,
1331
+ input_ids: torch.LongTensor = None,
1332
+ attention_mask: Optional[torch.Tensor] = None,
1333
+ position_ids: Optional[torch.LongTensor] = None,
1334
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1335
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1336
+ labels: Optional[torch.LongTensor] = None,
1337
+ use_cache: Optional[bool] = None,
1338
+ output_attentions: Optional[bool] = None,
1339
+ output_hidden_states: Optional[bool] = None,
1340
+ return_dict: Optional[bool] = None,
1341
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1342
+ r"""
1343
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1344
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1345
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1346
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1347
+ """
1348
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1349
+
1350
+ transformer_outputs = self.model(
1351
+ input_ids,
1352
+ attention_mask=attention_mask,
1353
+ position_ids=position_ids,
1354
+ past_key_values=past_key_values,
1355
+ inputs_embeds=inputs_embeds,
1356
+ use_cache=use_cache,
1357
+ output_attentions=output_attentions,
1358
+ output_hidden_states=output_hidden_states,
1359
+ return_dict=return_dict,
1360
+ )
1361
+ hidden_states = transformer_outputs[0]
1362
+ logits = self.score(hidden_states)
1363
+
1364
+ if input_ids is not None:
1365
+ batch_size = input_ids.shape[0]
1366
+ else:
1367
+ batch_size = inputs_embeds.shape[0]
1368
+
1369
+ if self.config.pad_token_id is None and batch_size != 1:
1370
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1371
+ if self.config.pad_token_id is None:
1372
+ sequence_lengths = -1
1373
+ else:
1374
+ if input_ids is not None:
1375
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1376
+ logits.device
1377
+ )
1378
+ else:
1379
+ sequence_lengths = -1
1380
+
1381
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1382
+
1383
+ loss = None
1384
+ if labels is not None:
1385
+ labels = labels.to(logits.device)
1386
+ if self.config.problem_type is None:
1387
+ if self.num_labels == 1:
1388
+ self.config.problem_type = 'regression'
1389
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1390
+ self.config.problem_type = 'single_label_classification'
1391
+ else:
1392
+ self.config.problem_type = 'multi_label_classification'
1393
+
1394
+ if self.config.problem_type == 'regression':
1395
+ loss_fct = MSELoss()
1396
+ if self.num_labels == 1:
1397
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1398
+ else:
1399
+ loss = loss_fct(pooled_logits, labels)
1400
+ elif self.config.problem_type == 'single_label_classification':
1401
+ loss_fct = CrossEntropyLoss()
1402
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1403
+ elif self.config.problem_type == 'multi_label_classification':
1404
+ loss_fct = BCEWithLogitsLoss()
1405
+ loss = loss_fct(pooled_logits, labels)
1406
+ if not return_dict:
1407
+ output = (pooled_logits,) + transformer_outputs[1:]
1408
+ return ((loss,) + output) if loss is not None else output
1409
+
1410
+ return SequenceClassifierOutputWithPast(
1411
+ loss=loss,
1412
+ logits=pooled_logits,
1413
+ past_key_values=transformer_outputs.past_key_values,
1414
+ hidden_states=transformer_outputs.hidden_states,
1415
+ attentions=transformer_outputs.attentions,
1416
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.distributed as dist
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from .conversation import get_conv_template
13
+ from .modeling_internlm2 import InternLM2ForCausalLM
14
+ from peft import LoraConfig, get_peft_model
15
+ from torch import nn
16
+ from torch.nn import CrossEntropyLoss
17
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
18
+ LlamaTokenizer, Qwen2ForCausalLM)
19
+ from transformers.modeling_outputs import CausalLMOutputWithPast
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import ModelOutput, logging
22
+ from transformers.activations import ACT2FN
23
+ from timm.models.layers import DropPath
24
+
25
+ from .configuration_internvl_chat import InternVLChatConfig
26
+ from .modeling_intern_vit import InternVisionModel
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ torch.set_printoptions(threshold=float('inf'))
31
+
32
+ def version_cmp(v1, v2, op='eq'):
33
+ import operator
34
+
35
+ from packaging import version
36
+ op_func = getattr(operator, op)
37
+ return op_func(version.parse(v1), version.parse(v2))
38
+
39
+
40
+ def pixel_shuffle(x, scale_factor=0.5, ps_version='v2'):
41
+ n, w, h, c = x.size()
42
+ # N, W, H, C --> N, W, H * scale, C // scale
43
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
44
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
45
+ x = x.permute(0, 2, 1, 3).contiguous()
46
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
47
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
48
+ int(c / (scale_factor * scale_factor)))
49
+ if ps_version == 'v1':
50
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
51
+ 'which results in a transposed image.')
52
+ else:
53
+ x = x.permute(0, 2, 1, 3).contiguous()
54
+ return x
55
+
56
+ def func_aggregation(x, image_ratio, h, w):
57
+ x = x.reshape(image_ratio[0] * image_ratio[1], h, w, -1)
58
+ x = x.transpose(1, 2)
59
+ x = x.reshape(image_ratio[0], image_ratio[1] * w, h, x.shape[-1])
60
+ x = x.transpose(1, 2)
61
+ x = x.reshape(1, image_ratio[0] * h, image_ratio[1] * w, x.shape[-1])
62
+
63
+ return x
64
+
65
+ def func_transform(x, block_height, block_width):
66
+ b = x.shape[0]
67
+ C = x.shape[-1]
68
+
69
+ num_blocks_height = x.shape[1] // block_height
70
+ num_blocks_width = x.shape[2] // block_width
71
+
72
+ x = x.reshape(b, num_blocks_height, block_height, num_blocks_width, block_width, C)
73
+ x = x.transpose(3, 2)
74
+ x = x.reshape(-1, block_height, block_width, C)
75
+ x = x.view(-1, block_height * block_width, C)
76
+
77
+ return x
78
+
79
+ def func_padding(x, max_length=4):
80
+ current_length = x.shape[1]
81
+ C = x.shape[-1]
82
+
83
+ if current_length < max_length:
84
+ padding_length = max_length - current_length
85
+ padded_tensor = torch.cat([x, torch.zeros([256, padding_length, C], dtype=x.dtype, device=x.device)], dim=1)
86
+ else:
87
+ padded_tensor = x
88
+
89
+ attention_ones = torch.ones([256, 1, current_length], dtype=x.dtype, device=x.device)
90
+ attention_zeros = torch.zeros([256, 1, max_length - current_length], dtype=x.dtype, device=x.device)
91
+ attention_mask = torch.cat([attention_ones, attention_zeros], dim=2)
92
+ attention_mask = attention_mask.to(dtype=torch.bool)
93
+
94
+ return padded_tensor, attention_mask
95
+
96
+
97
+ class InternRMSNorm(nn.Module):
98
+ def __init__(self, hidden_size, eps=1e-6):
99
+ """
100
+ InternRMSNorm is equivalent to T5LayerNorm
101
+ """
102
+ super().__init__()
103
+ self.weight = nn.Parameter(torch.ones(hidden_size))
104
+ self.variance_epsilon = eps
105
+
106
+ def forward(self, hidden_states):
107
+ input_dtype = hidden_states.dtype
108
+ hidden_states = hidden_states.to(torch.float32)
109
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
110
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
111
+ return self.weight * hidden_states.to(input_dtype)
112
+
113
+
114
+ class InternAttention(nn.Module):
115
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
116
+
117
+ def __init__(self, embed_dim, num_heads):
118
+ super().__init__()
119
+ self.embed_dim = embed_dim
120
+ self.num_heads = num_heads
121
+ self.head_dim = self.embed_dim // self.num_heads
122
+ if self.head_dim * self.num_heads != self.embed_dim:
123
+ raise ValueError(
124
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
125
+ f' {self.num_heads}).'
126
+ )
127
+
128
+ self.scale = self.head_dim ** -0.5
129
+ self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
130
+ self.k = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
131
+ self.v = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
132
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
133
+ self.norm1 = InternRMSNorm(self.embed_dim)
134
+ self.norm2 = InternRMSNorm(self.embed_dim)
135
+
136
+ def _naive_attn(self, q, kv, mask=None):
137
+ q = self.norm1(q)
138
+ k = v = self.norm2(kv)
139
+
140
+ B, N_q, C = q.shape
141
+ N_kv = kv.shape[1]
142
+
143
+ q = self.q(q).reshape(B, N_q, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
144
+ k = self.k(k).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
145
+ v = self.v(v).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
146
+
147
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
148
+
149
+ if mask is not None:
150
+ attn = attn.masked_fill(mask.unsqueeze(1) == 0, float('-inf'))
151
+
152
+ attn = attn.softmax(dim=-1)
153
+
154
+ x = (attn @ v).transpose(1, 2).reshape(B, N_q, C)
155
+ x = self.proj(x)
156
+ return x
157
+
158
+ def forward(self,
159
+ hidden_states_q: torch.Tensor,
160
+ hidden_states_kv: torch.Tensor,
161
+ attention_mask: torch.Tensor = None) -> torch.Tensor:
162
+
163
+ x = self._naive_attn(hidden_states_q, hidden_states_kv, attention_mask)
164
+ return x
165
+
166
+
167
+ class InternMLP(nn.Module):
168
+ def __init__(self, embed_dim, act):
169
+ super().__init__()
170
+ self.act = ACT2FN[act]
171
+ self.w1 = nn.Linear(embed_dim, 4 * embed_dim, bias=False)
172
+ self.w3 = nn.Linear(embed_dim, 4 * embed_dim, bias=False)
173
+ self.w2 = nn.Linear(4 * embed_dim, embed_dim, bias=False)
174
+ self.norm = InternRMSNorm(embed_dim)
175
+
176
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
177
+
178
+ hidden_states = self.norm(hidden_states)
179
+ hidden_states = self.w2(self.act(self.w1(hidden_states)) * self.w3(hidden_states))
180
+
181
+ return hidden_states
182
+
183
+
184
+ class InternEncoderLayer(nn.Module):
185
+ def __init__(self, embed_dim):
186
+ super().__init__()
187
+ self.embed_dim = embed_dim
188
+ self.num_heads = 16
189
+ self.act = 'silu'
190
+ self.drop_path_rate = 0.1
191
+
192
+ self.attn = InternAttention(self.embed_dim, self.num_heads)
193
+ self.mlp = InternMLP(self.embed_dim, self.act)
194
+
195
+ self.drop_path1 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity()
196
+ self.drop_path2 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity()
197
+
198
+
199
+ def forward(
200
+ self,
201
+ hidden_states_q: torch.Tensor,
202
+ hidden_states_kv: torch.Tensor,
203
+ attn_mask: torch.Tensor = None
204
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
205
+ """
206
+ Args:
207
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
208
+ """
209
+ hidden_states = hidden_states_q + self.drop_path1(self.attn(hidden_states_q, hidden_states_kv, attn_mask))
210
+ hidden_states = hidden_states + self.drop_path2(self.mlp(hidden_states))
211
+
212
+ return hidden_states
213
+
214
+
215
+ class VisionProjector(nn.Module):
216
+ def __init__(self, vit_hidden_size, llm_hidden_size, downsample_ratio, ps_version, num_image_token):
217
+ super().__init__()
218
+ self.downsample_ratio = downsample_ratio
219
+ self.ps_version = ps_version
220
+
221
+ self.mlp1 = nn.Sequential(
222
+ InternRMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
223
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size, bias=False),
224
+ nn.SiLU()
225
+ )
226
+
227
+ self.mlp2 = nn.Sequential(
228
+ InternRMSNorm(vit_hidden_size),
229
+ nn.Linear(vit_hidden_size, llm_hidden_size, bias=False),
230
+ nn.SiLU()
231
+ )
232
+
233
+ self.mlp3 = nn.Sequential(
234
+ InternRMSNorm(vit_hidden_size),
235
+ nn.Linear(vit_hidden_size, llm_hidden_size, bias=False),
236
+ nn.SiLU()
237
+ )
238
+
239
+ self.cls_scale = nn.Parameter(torch.randn([1, int(num_image_token ** 0.5), int(num_image_token ** 0.5), llm_hidden_size]))
240
+
241
+ self.attn_global = InternEncoderLayer(llm_hidden_size)
242
+ self.attn_local = InternEncoderLayer(llm_hidden_size)
243
+
244
+
245
+ def forward(self, vit_embeds):
246
+ cls_embds = vit_embeds[:, 0, :]
247
+ vit_embeds = vit_embeds[:, 1:, :]
248
+
249
+ b = vit_embeds.shape[0]
250
+ h = w = int(vit_embeds.shape[1] ** 0.5)
251
+ vit_embeds = vit_embeds.reshape(b, h, w, -1)
252
+
253
+ vit_embeds_q = pixel_shuffle(vit_embeds, self.downsample_ratio, self.ps_version)
254
+ vit_embeds_q = self.mlp1(vit_embeds_q)
255
+ vit_embeds_q = func_transform(vit_embeds_q, 1, 1)
256
+
257
+ vit_embeds_cls = self.mlp2(cls_embds)
258
+ vit_embeds_cls = vit_embeds_cls.reshape(b, 1, 1, -1).expand(-1, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1)
259
+ cls_scale = self.cls_scale.expand(b, -1, -1, -1)
260
+ vit_embeds_cls = vit_embeds_cls * cls_scale
261
+ vit_embeds_cls = func_transform(vit_embeds_cls, 1, 1)
262
+
263
+ vit_embeds_kv = self.mlp3(vit_embeds)
264
+ vit_embeds_kv = func_transform(vit_embeds_kv, int(1 / self.downsample_ratio), int(1 / self.downsample_ratio))
265
+
266
+ vit_embeds_q = self.attn_local(vit_embeds_q, vit_embeds_kv)
267
+
268
+ vit_embeds_cls = self.attn_global(vit_embeds_cls, vit_embeds_kv)
269
+
270
+ vit_embeds = vit_embeds_q + vit_embeds_cls
271
+ vit_embeds = vit_embeds.reshape(b, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1)
272
+
273
+ return vit_embeds
274
+
275
+
276
+ class InternVLChatModel(PreTrainedModel):
277
+ config_class = InternVLChatConfig
278
+ main_input_name = 'pixel_values'
279
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
280
+ 'Phi3DecoderLayer', 'Qwen2DecoderLayer']
281
+ _supports_flash_attn_2 = True
282
+
283
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
284
+ super().__init__(config)
285
+
286
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
287
+ image_size = config.force_image_size or config.vision_config.image_size
288
+ patch_size = config.vision_config.patch_size
289
+ self.patch_size = patch_size
290
+ self.select_layer = config.select_layer
291
+ self.template = config.template
292
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
293
+ self.downsample_ratio = config.downsample_ratio
294
+ self.ps_version = config.ps_version
295
+ self.llm_arch_name = config.llm_config.architectures[0]
296
+
297
+ logger.info(f'num_image_token: {self.num_image_token}')
298
+ logger.info(f'ps_version: {self.ps_version}')
299
+ if vision_model is not None:
300
+ self.vision_model = vision_model
301
+ else:
302
+ self.vision_model = InternVisionModel(config.vision_config)
303
+ if language_model is not None:
304
+ self.language_model = language_model
305
+ else:
306
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
307
+ self.language_model = LlamaForCausalLM(config.llm_config)
308
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
309
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
310
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
311
+ self.language_model = Phi3ForCausalLM(config.llm_config)
312
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
313
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
314
+ else:
315
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
316
+
317
+ vit_hidden_size = config.vision_config.hidden_size
318
+ llm_hidden_size = config.llm_config.hidden_size
319
+
320
+ self.projector = VisionProjector(vit_hidden_size, llm_hidden_size, self.downsample_ratio, self.ps_version, self.num_image_token)
321
+
322
+ self.img_context_token_id = None
323
+ self.conv_template = get_conv_template(self.template)
324
+ if hasattr(config, 'system_message'):
325
+ self.system_message = config.system_message
326
+ else:
327
+ self.system_message = self.conv_template.system_message
328
+ self.num_samples = 0
329
+
330
+ if config.use_backbone_lora:
331
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
332
+
333
+ if config.use_llm_lora:
334
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
335
+
336
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
337
+ lora_config = LoraConfig(
338
+ r=r,
339
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
340
+ lora_alpha=lora_alpha,
341
+ lora_dropout=lora_dropout,
342
+ )
343
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
344
+ self.vision_model.print_trainable_parameters()
345
+
346
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
347
+ # Determine the target modules based on the architecture of the language model
348
+ if self.llm_arch_name == 'InternLM2ForCausalLM':
349
+ target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
350
+ elif self.llm_arch_name == 'Phi3ForCausalLM':
351
+ target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
352
+ elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
353
+ target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
354
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
355
+ else:
356
+ raise NotImplemented
357
+ lora_config = LoraConfig(
358
+ r=r,
359
+ target_modules=target_modules,
360
+ lora_alpha=lora_alpha,
361
+ lora_dropout=lora_dropout,
362
+ task_type='CAUSAL_LM'
363
+ )
364
+ self.language_model = get_peft_model(self.language_model, lora_config)
365
+ self.language_model.enable_input_require_grads()
366
+ self.language_model.print_trainable_parameters()
367
+
368
+
369
+ def extract_feature(self, pixel_values):
370
+ if self.select_layer == -1:
371
+ vit_embeds = self.vision_model(
372
+ pixel_values=pixel_values,
373
+ output_hidden_states=False,
374
+ return_dict=True).last_hidden_state
375
+ else:
376
+ vit_embeds = self.vision_model(
377
+ pixel_values=pixel_values,
378
+ output_hidden_states=True,
379
+ return_dict=True).hidden_states[self.select_layer]
380
+
381
+ vit_embeds = self.projector(vit_embeds)
382
+
383
+ return vit_embeds
384
+
385
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
386
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
387
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
388
+ if history is not None or return_history:
389
+ print('Now multi-turn chat is not supported in batch_chat.')
390
+ raise NotImplementedError
391
+
392
+ if image_counts is not None:
393
+ num_patches_list = image_counts
394
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
395
+
396
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
397
+ self.img_context_token_id = img_context_token_id
398
+
399
+ if verbose and pixel_values is not None:
400
+ image_bs = pixel_values.shape[0]
401
+ print(f'dynamic ViT batch size: {image_bs}')
402
+
403
+ queries = []
404
+ for idx, num_patches in enumerate(num_patches_list):
405
+ question = questions[idx]
406
+ if pixel_values is not None and '<image>' not in question:
407
+ question = '<image>\n' + question
408
+ template = get_conv_template(self.template)
409
+ template.system_message = self.system_message
410
+ template.append_message(template.roles[0], question)
411
+ template.append_message(template.roles[1], None)
412
+ query = template.get_prompt()
413
+
414
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
415
+ query = query.replace('<image>', image_tokens, 1)
416
+ queries.append(query)
417
+
418
+ tokenizer.padding_side = 'left'
419
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
420
+ input_ids = model_inputs['input_ids'].cuda()
421
+ attention_mask = model_inputs['attention_mask'].cuda()
422
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
423
+ generation_config['eos_token_id'] = eos_token_id
424
+ generation_output = self.generate(
425
+ pixel_values=pixel_values,
426
+ input_ids=input_ids,
427
+ attention_mask=attention_mask,
428
+ **generation_config
429
+ )
430
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
431
+ responses = [response.split(template.sep)[0].strip() for response in responses]
432
+ return responses
433
+
434
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
435
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
436
+ verbose=False):
437
+
438
+ if history is None and pixel_values is not None and '<image>' not in question:
439
+ question = '<image>\n' + question
440
+
441
+ if num_patches_list is None:
442
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
443
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
444
+
445
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
446
+ self.img_context_token_id = img_context_token_id
447
+
448
+ template = get_conv_template(self.template)
449
+ template.system_message = self.system_message
450
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
451
+
452
+ history = [] if history is None else history
453
+ for (old_question, old_answer) in history:
454
+ template.append_message(template.roles[0], old_question)
455
+ template.append_message(template.roles[1], old_answer)
456
+ template.append_message(template.roles[0], question)
457
+ template.append_message(template.roles[1], None)
458
+ query = template.get_prompt()
459
+
460
+ if verbose and pixel_values is not None:
461
+ image_bs = pixel_values.shape[0]
462
+ print(f'dynamic ViT batch size: {image_bs}')
463
+
464
+ for num_patches in num_patches_list:
465
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
466
+ query = query.replace('<image>', image_tokens, 1)
467
+
468
+ model_inputs = tokenizer(query, return_tensors='pt')
469
+ input_ids = model_inputs['input_ids'].cuda()
470
+ attention_mask = model_inputs['attention_mask'].cuda()
471
+ generation_config['eos_token_id'] = eos_token_id
472
+ generation_output = self.generate(
473
+ pixel_values=pixel_values,
474
+ input_ids=input_ids,
475
+ attention_mask=attention_mask,
476
+ **generation_config
477
+ )
478
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
479
+ response = response.split(template.sep)[0].strip()
480
+ history.append((question, response))
481
+ if return_history:
482
+ return response, history
483
+ else:
484
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
485
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
486
+ if verbose:
487
+ print(query_to_print, response)
488
+ return response
489
+
490
+ @torch.no_grad()
491
+ def generate(
492
+ self,
493
+ pixel_values: Optional[torch.FloatTensor] = None,
494
+ input_ids: Optional[torch.FloatTensor] = None,
495
+ attention_mask: Optional[torch.LongTensor] = None,
496
+ visual_features: Optional[torch.FloatTensor] = None,
497
+ generation_config: Optional[GenerationConfig] = None,
498
+ output_hidden_states: Optional[bool] = None,
499
+ return_dict: Optional[bool] = None,
500
+ **generate_kwargs,
501
+ ) -> torch.LongTensor:
502
+
503
+ assert self.img_context_token_id is not None
504
+ if pixel_values is not None:
505
+ if visual_features is not None:
506
+ vit_embeds = visual_features
507
+ else:
508
+ vit_embeds = self.extract_feature(pixel_values)
509
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
510
+ B, N, C = input_embeds.shape
511
+ input_embeds = input_embeds.reshape(B * N, C)
512
+
513
+ input_ids = input_ids.reshape(B * N)
514
+ selected = (input_ids == self.img_context_token_id)
515
+ assert selected.sum() != 0
516
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
517
+
518
+ input_embeds = input_embeds.reshape(B, N, C)
519
+ else:
520
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
521
+
522
+ outputs = self.language_model.generate(
523
+ inputs_embeds=input_embeds,
524
+ attention_mask=attention_mask,
525
+ generation_config=generation_config,
526
+ output_hidden_states=output_hidden_states,
527
+ return_dict=return_dict,
528
+ use_cache=True,
529
+ **generate_kwargs,
530
+ )
531
+
532
+ return outputs
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "model_max_length": 4096,
176
+ "pad_token": "</s>",
177
+ "tokenizer_class": "InternLM2Tokenizer",
178
+ "unk_token": "<unk>"
179
+ }