Manual Annotation of Robson Criteria and Obstetric Entities: Inter-Annotator Agreement and Initial NER Models Implementation
The xlm-roberta-es-Robson-criteria-classification-NER is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the XLM-RoBERTa base model.
Model Details
Model Description
In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).
Clinical entities set
No | Spanish Entity | English Entity | Obsetric variable |
---|---|---|---|
1 | Parto nulรญpara | Nullipara labor | Parity |
2 | Parto multรญpara | Multipara labor | |
3 | Cesรกrea previa (Si) | One or more Cesarean Section | Previous Cesarean Section |
4 | Cesรกrea previa (No) | None Cesarean Section | |
5 | TDP espontรกneo | Spontaneous labor | Onset of labour |
6 | TDP inducido | Induced labor | |
7 | TDP No: cesรกrea programada | No labor, scheduled Cesarean Section | |
8 | Embarazo รบnico | Singleton pregnancy | Number of fetuses |
9 | Embarazo Mรบltiple | Multiple pregnancy | |
10 | Edad < 37 semanas | Preterm pregnancy | Gestational age |
11 | Edad โฅ 37 semanas | Term pregnancy | |
12 | Posiciรณn cefรกlica | Cephalic presentation | Fetal lie and presentation |
13 | Posiciรณn podรกlica | Breech presentation | |
14 | Situaciรณn transversa | Transverse lie | |
15 | Antibiรณtico | Antibiotic | |
16 | Complicaciรณn | Complication | |
17 | Dosis | Dose | |
18 | Hemorragia Obstรฉtrica | Obstetric Hemorrhage | |
19 | Info personal | Personal Information | |
20 | Posologรญa | Posology | |
21 | Tipo de resoluciรณn: parto | Delivery resolution: VB | |
22 | Tipo de resoluciรณn: cesarea | Delivery resolution: CS | |
23 | Uterotรณnico | Uterotonic |
This model detects entities by classifying every token according to the IOB format:
['O', 'B-Antibiรณtico', 'I-Antibiรณtico', 'B-Cesรกrea previa (NO)', 'I-Cesรกrea previa (NO)', 'B-Cesรกrea previa (SI)', 'I-Cesรกrea previa (SI)', 'B-Complicaciรณn', 'I-Complicaciรณn', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo mรบltiple', 'I-Embarazo mรบltiple', 'B-Embarazo รบnico', 'I-Embarazo รบnico', 'B-Hemorragia obstรฉtrica', 'I-Hemorragia obstรฉtrica', 'B-Info personal', 'I-Info personal', 'B-Parto multรญpara', 'I-Parto multรญpara', 'B-Parto nulรญpara', 'I-Parto nulรญpara', 'B-Posiciรณn cefรกlica', 'I-Posiciรณn cefรกlica', 'B-Posiciรณn podรกlica', 'I-Posiciรณn podรกlica', 'B-Posologรญa', 'I-Posologรญa', 'B-Situaciรณn transversa', 'I-Situaciรณn transversa', 'B-TDP No: cesรกrea programada', 'I-TDP No: cesรกrea programada', 'B-TDP espontรกneo', 'I-TDP espontรกneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resoluciรณn: cesรกrea', 'I-Tipo de resoluciรณn: cesรกrea', 'B-Tipo de resoluciรณn: parto', 'I-Tipo de resoluciรณn: parto', 'B-Uterotรณnico', 'I-Uterotรณnico']
๐ค Autor
Created by Orlando Ramos-Flores.
This model is part of the efforts of the LATE Lab IIMAS-UNAM.
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 33
Model tree for LATEiimas/xlm-roberta-es-Robson-criteria-classification-NER
Base model
FacebookAI/xlm-roberta-base