Manual Annotation of Robson Criteria and Obstetric Entities: Inter-Annotator Agreement and Initial NER Models Implementation

The xlm-roberta-es-Robson-criteria-classification-NER is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the XLM-RoBERTa base model.

Model Details

Model Description

In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).

Clinical entities set

No Spanish Entity English Entity Obsetric variable
1Parto nulรญparaNullipara laborParity
2Parto multรญparaMultipara labor
3Cesรกrea previa (Si)One or more Cesarean SectionPrevious Cesarean Section
4Cesรกrea previa (No)None Cesarean Section
5TDP espontรกneoSpontaneous laborOnset of labour
6TDP inducidoInduced labor
7TDP No: cesรกrea programadaNo labor, scheduled Cesarean Section
8Embarazo รบnicoSingleton pregnancyNumber of fetuses
9Embarazo MรบltipleMultiple pregnancy
10Edad < 37 semanasPreterm pregnancyGestational age
11Edad โ‰ฅ 37 semanasTerm pregnancy
12Posiciรณn cefรกlicaCephalic presentationFetal lie and presentation
13Posiciรณn podรกlicaBreech presentation
14Situaciรณn transversaTransverse lie
15AntibiรณticoAntibiotic
16ComplicaciรณnComplication
17DosisDose
18Hemorragia Obstรฉtrica Obstetric Hemorrhage
19Info personalPersonal Information
20PosologรญaPosology
21Tipo de resoluciรณn: partoDelivery resolution: VB
22Tipo de resoluciรณn: cesareaDelivery resolution: CS
23UterotรณnicoUterotonic

This model detects entities by classifying every token according to the IOB format:

['O', 'B-Antibiรณtico', 'I-Antibiรณtico', 'B-Cesรกrea previa (NO)', 'I-Cesรกrea previa (NO)', 'B-Cesรกrea previa (SI)', 'I-Cesรกrea previa (SI)', 'B-Complicaciรณn', 'I-Complicaciรณn', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo mรบltiple', 'I-Embarazo mรบltiple', 'B-Embarazo รบnico', 'I-Embarazo รบnico', 'B-Hemorragia obstรฉtrica', 'I-Hemorragia obstรฉtrica', 'B-Info personal', 'I-Info personal', 'B-Parto multรญpara', 'I-Parto multรญpara', 'B-Parto nulรญpara', 'I-Parto nulรญpara', 'B-Posiciรณn cefรกlica', 'I-Posiciรณn cefรกlica', 'B-Posiciรณn podรกlica', 'I-Posiciรณn podรกlica', 'B-Posologรญa', 'I-Posologรญa', 'B-Situaciรณn transversa', 'I-Situaciรณn transversa', 'B-TDP No: cesรกrea programada', 'I-TDP No: cesรกrea programada', 'B-TDP espontรกneo', 'I-TDP espontรกneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resoluciรณn: cesรกrea', 'I-Tipo de resoluciรณn: cesรกrea', 'B-Tipo de resoluciรณn: parto', 'I-Tipo de resoluciรณn: parto', 'B-Uterotรณnico', 'I-Uterotรณnico']

๐Ÿค Autor

Created by Orlando Ramos-Flores.
This model is part of the efforts of the LATE Lab IIMAS-UNAM.

This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
33
Safetensors
Model size
277M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for LATEiimas/xlm-roberta-es-Robson-criteria-classification-NER

Finetuned
(2708)
this model