metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9479166666666666
- name: Recall
type: recall
value: 0.9479166666666666
- name: F1
type: f1
value: 0.9464668525772705
- name: Precision
type: precision
value: 0.9472181024490807
deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1444
- Accuracy: 0.9479
- Recall: 0.9479
- F1: 0.9465
- Precision: 0.9472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
---|---|---|---|---|---|---|---|
0.2268 | 1.0 | 96 | 0.2805 | 0.8919 | 0.8919 | 0.8753 | 0.8798 |
0.2356 | 2.0 | 192 | 0.2842 | 0.9023 | 0.9023 | 0.8950 | 0.8967 |
0.1597 | 3.0 | 288 | 0.2120 | 0.9219 | 0.9219 | 0.9116 | 0.9211 |
0.1349 | 4.0 | 384 | 0.2449 | 0.9206 | 0.9206 | 0.9146 | 0.9193 |
0.1647 | 5.0 | 480 | 0.2226 | 0.9167 | 0.9167 | 0.9129 | 0.9121 |
0.1117 | 6.0 | 576 | 0.1599 | 0.9453 | 0.9453 | 0.9415 | 0.9434 |
0.1232 | 7.0 | 672 | 0.1698 | 0.9492 | 0.9492 | 0.9477 | 0.9485 |
0.1317 | 8.0 | 768 | 0.1624 | 0.9388 | 0.9388 | 0.9365 | 0.9368 |
0.1018 | 9.0 | 864 | 0.1648 | 0.9388 | 0.9388 | 0.9360 | 0.9355 |
0.0828 | 10.0 | 960 | 0.1597 | 0.9453 | 0.9453 | 0.9435 | 0.9454 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1