Kushagra07's picture
End of training
8631108 verified
|
raw
history blame
4.07 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - f1
  - precision
model-index:
  - name: deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-14687
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8458918688803746
          - name: Recall
            type: recall
            value: 0.8458918688803746
          - name: F1
            type: f1
            value: 0.843745130911636
          - name: Precision
            type: precision
            value: 0.8521498018011563

deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-14687

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3635
  • Accuracy: 0.8459
  • Recall: 0.8459
  • F1: 0.8437
  • Precision: 0.8521

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
0.6153 0.9974 293 0.6607 0.7739 0.7739 0.7506 0.7444
0.5075 1.9983 587 0.5850 0.7927 0.7927 0.7767 0.8081
0.5278 2.9991 881 0.4721 0.8199 0.8199 0.8170 0.8301
0.445 4.0 1175 0.4495 0.8186 0.8186 0.8136 0.8192
0.3781 4.9974 1468 0.4018 0.8263 0.8263 0.8249 0.8326
0.4025 5.9983 1762 0.4356 0.8221 0.8221 0.8195 0.8245
0.3409 6.9991 2056 0.3876 0.8267 0.8267 0.8248 0.8330
0.3181 8.0 2350 0.3849 0.8391 0.8391 0.8372 0.8436
0.3042 8.9974 2643 0.3850 0.8280 0.8280 0.8285 0.8347
0.2475 9.9983 2937 0.3624 0.8493 0.8493 0.8475 0.8571
0.2339 10.9991 3231 0.3865 0.8318 0.8318 0.8281 0.8307
0.2455 12.0 3525 0.3337 0.8387 0.8387 0.8371 0.8433
0.2127 12.9974 3818 0.3685 0.8306 0.8306 0.8281 0.8356
0.2288 13.9983 4112 0.3545 0.8370 0.8370 0.8352 0.8385
0.2534 14.9991 4406 0.3587 0.8429 0.8429 0.8398 0.8537
0.1911 16.0 4700 0.3573 0.8387 0.8387 0.8367 0.8396
0.2118 16.9974 4993 0.3676 0.8370 0.8370 0.8356 0.8415
0.22 17.9983 5287 0.3469 0.8357 0.8357 0.8326 0.8412
0.1938 18.9991 5581 0.3512 0.8365 0.8365 0.8343 0.8363
0.1816 19.9489 5860 0.3323 0.8463 0.8463 0.8449 0.8476

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.18.0
  • Tokenizers 0.19.1