CS221-roberta-base-finetuned-augmentation
This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1561
- F1: 0.9312
- Roc Auc: 0.9459
- Accuracy: 0.8638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3933 | 1.0 | 180 | 0.3696 | 0.6352 | 0.7378 | 0.4288 |
0.2905 | 2.0 | 360 | 0.2958 | 0.7524 | 0.8079 | 0.5587 |
0.2139 | 3.0 | 540 | 0.2298 | 0.8538 | 0.8845 | 0.6769 |
0.1505 | 4.0 | 720 | 0.1996 | 0.8757 | 0.9030 | 0.7429 |
0.1218 | 5.0 | 900 | 0.1745 | 0.9027 | 0.9200 | 0.7880 |
0.0737 | 6.0 | 1080 | 0.1556 | 0.9199 | 0.9356 | 0.8290 |
0.0604 | 7.0 | 1260 | 0.1541 | 0.9241 | 0.9366 | 0.8485 |
0.0353 | 8.0 | 1440 | 0.1538 | 0.9294 | 0.9468 | 0.8652 |
0.024 | 9.0 | 1620 | 0.1561 | 0.9312 | 0.9459 | 0.8638 |
0.0235 | 10.0 | 1800 | 0.1638 | 0.9283 | 0.9459 | 0.8624 |
0.0159 | 11.0 | 1980 | 0.1615 | 0.9310 | 0.9467 | 0.8694 |
0.0158 | 12.0 | 2160 | 0.1625 | 0.9307 | 0.9461 | 0.8687 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kuongan/CS221-roberta-base-finetuned-augmentation
Base model
FacebookAI/roberta-base