CS221-deberta-v3-base
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3858
- F1: 0.7702
- Roc Auc: 0.8268
- Accuracy: 0.4765
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.5686 | 1.0 | 70 | 0.5804 | 0.4593 | 0.6262 | 0.1516 |
0.4291 | 2.0 | 140 | 0.4434 | 0.6553 | 0.7436 | 0.3700 |
0.3496 | 3.0 | 210 | 0.3954 | 0.7153 | 0.7843 | 0.4025 |
0.2663 | 4.0 | 280 | 0.3775 | 0.7515 | 0.8110 | 0.4567 |
0.2147 | 5.0 | 350 | 0.3772 | 0.7513 | 0.8122 | 0.4567 |
0.1815 | 6.0 | 420 | 0.3787 | 0.7589 | 0.8183 | 0.4585 |
0.1409 | 7.0 | 490 | 0.3915 | 0.7617 | 0.8187 | 0.4729 |
0.1165 | 8.0 | 560 | 0.3858 | 0.7702 | 0.8268 | 0.4765 |
0.1082 | 9.0 | 630 | 0.3874 | 0.7693 | 0.8262 | 0.4675 |
0.1069 | 10.0 | 700 | 0.3864 | 0.7693 | 0.8262 | 0.4675 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 70
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kuongan/CS221-deberta-v3-base
Base model
microsoft/deberta-v3-base