|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/deberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CS221-deberta-base-finetuned-semeval-NT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CS221-deberta-base-finetuned-semeval-NT |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5533 |
|
- F1: 0.7588 |
|
- Roc Auc: 0.8183 |
|
- Accuracy: 0.4693 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.4331 | 1.0 | 277 | 0.3934 | 0.7185 | 0.7878 | 0.3845 | |
|
| 0.3183 | 2.0 | 554 | 0.3692 | 0.7383 | 0.8014 | 0.4458 | |
|
| 0.1905 | 3.0 | 831 | 0.4011 | 0.7447 | 0.8045 | 0.4819 | |
|
| 0.1716 | 4.0 | 1108 | 0.4457 | 0.7489 | 0.8106 | 0.4531 | |
|
| 0.0954 | 5.0 | 1385 | 0.4980 | 0.7573 | 0.8190 | 0.4567 | |
|
| 0.075 | 6.0 | 1662 | 0.5533 | 0.7588 | 0.8183 | 0.4693 | |
|
| 0.0442 | 7.0 | 1939 | 0.6536 | 0.7360 | 0.7985 | 0.4531 | |
|
| 0.0075 | 8.0 | 2216 | 0.6831 | 0.7539 | 0.8135 | 0.4675 | |
|
| 0.0111 | 9.0 | 2493 | 0.7289 | 0.7529 | 0.8124 | 0.4693 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|