|
--- |
|
library_name: transformers |
|
base_model: Kendamarron/Qwen2.5-4x0.5B-cpt |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- Kendamarron/jimba-instruction-all |
|
- Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought |
|
- Aratako/Synthetic-JP-EN-Coding-Dataset-801k |
|
- llm-jp/magpie-sft-v1.0 |
|
model-index: |
|
- name: Qwen2.5-4x0.5B-sft-v1 |
|
results: [] |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
--- |
|
|
|
## Qwen2.5-1.75B-A1.1B-Instruct-ja |
|
|
|
Qwen2.5-0.5B系のモデルを組み合わせて作ったMoEです。 |
|
|
|
## Details |
|
|
|
https://zenn.dev/kendama/articles/68ae234e9371ac |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
# 学習のベースモデルに関する設定 |
|
base_model: Kendamarron/Qwen2.5-4x0.5B-cpt |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
# 学習後のモデルのHFへのアップロードに関する設定 |
|
hub_model_id: Kendamarron/Qwen2.5-4x0.5B-sft-v1 |
|
hub_strategy: "end" |
|
push_dataset_to_hub: |
|
hf_use_auth_token: true |
|
|
|
# Liger Kernelの設定(学習の軽量・高速化) |
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_cross_entropy: false |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
# 量子化に関する設定 |
|
load_in_8bit: false |
|
load_in_4bit: false |
|
|
|
# SFTに利用するchat templateの設定 |
|
chat_template: qwen_25 |
|
|
|
# 学習データセットの前処理に関する設定 |
|
datasets: |
|
- path: Kendamarron/jimba-instruction-all |
|
split: train |
|
type: chat_template |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: content |
|
- path: Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought |
|
split: train |
|
type: chat_template |
|
field_messages: messages |
|
message_field_role: role |
|
message_field_content: content |
|
- path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k |
|
split: train[0:10000] |
|
type: chat_template |
|
field_messages: messages |
|
message_field_role: role |
|
message_field_content: content |
|
- path: llm-jp/magpie-sft-v1.0 |
|
split: train[0:30000] |
|
type: chat_template |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: content |
|
|
|
|
|
# データセット、モデルの出力先に関する設定 |
|
shuffle_merged_datasets: true |
|
dataset_prepared_path: /workspace/data/sft-data |
|
output_dir: /workspace/data/models/Qwen2.5-4x0.5B-SFT |
|
|
|
# valid datasetのサイズ |
|
val_set_size: 0.005 |
|
|
|
# wandbに関する設定 |
|
wandb_project: Qwen2.5-4x0.5B |
|
wandb_entity: kendamarron |
|
wandb_watch: |
|
wandb_name: sft-v1 |
|
wandb_log_model: |
|
|
|
# 学習に関する様々な設定 |
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
cosine_min_lr_ratio: 0.1 |
|
learning_rate: 2e-5 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: false |
|
early_stopping_patience: |
|
auto_resume_from_checkpoints: true |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
saves_per_epoch: 1 |
|
|
|
warmup_steps: 60 |
|
eval_steps: 100 |
|
eval_batch_size: 1 |
|
eval_table_size: |
|
eval_max_new_tokens: |
|
debug: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
eos_token: "<|im_end|>" |
|
pad_token: "<|end_of_text|>" |
|
tokens: |
|
- "<|im_start|>" |
|
- "<|im_end|>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# Qwen2.5-4x0.5B-sft-v1 |
|
|
|
This model is a fine-tuned version of [Kendamarron/Qwen2.5-4x0.5B-cpt](https://huggingface.co/Kendamarron/Qwen2.5-4x0.5B-cpt) on the Kendamarron/jimba-instruction-all, the Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought, the Aratako/Synthetic-JP-EN-Coding-Dataset-801k and the llm-jp/magpie-sft-v1.0 datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0085 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 60 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3068 | 0.0033 | 1 | 1.3071 | |
|
| 1.1087 | 0.3309 | 100 | 1.0806 | |
|
| 1.1393 | 0.6617 | 200 | 1.0488 | |
|
| 1.0569 | 0.9926 | 300 | 1.0286 | |
|
| 0.9902 | 1.3209 | 400 | 1.0215 | |
|
| 0.9933 | 1.6518 | 500 | 1.0133 | |
|
| 0.9706 | 1.9826 | 600 | 1.0085 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |