metadata
base_model:
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
L3.1-70b-Ginny
Like with everything, I have to start somewhere right? As such this model is named Ginny.
L3.1-70b-Ginny is a merge of the following models using LazyMergekit:
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
Using Hermes as a base, I mixed in Glitz and Euryale which I both liked. I think I prefer Glitz more actually.
Additionally I decided to throw in cyberagent's Japanese Instruct in the hopes it will boost Japanese capabilities.
(Though on recommendations from others, I've steeled myself to never use Hermes as base ever again.)
🧩 Configuration
models:
- model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
density: 0.33
weight: 0.25
- model: Fizzarolli/L3.1-70b-glitz-v0.2
parameters:
density: 0.7
weight: 0.5
- model: cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
parameters:
density: 0.5
weight: 0.25
- model: Sao10K/L3-70B-Euryale-v2.1
parameters:
density: 0.7
weight: 0.5
merge_method: ties
base_model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
normalize: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KaraKaraWitch/L3.1-70b-Ginny"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])