camembert-base-EVA

This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0010
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8389 1.0 875 0.1286 0.9862 0.9868 0.9862 0.9862
0.069 2.0 1750 0.0334 0.9954 0.9956 0.9954 0.9954
0.019 3.0 2625 0.0248 0.9954 0.9955 0.9954 0.9954
0.0103 4.0 3500 0.0106 0.9985 0.9985 0.9985 0.9985
0.003 5.0 4375 0.0357 0.9939 0.9940 0.9939 0.9939
0.0059 6.0 5250 0.0285 0.9954 0.9956 0.9954 0.9954
0.0087 7.0 6125 0.0237 0.9969 0.9970 0.9969 0.9969
0.0058 8.0 7000 0.0180 0.9969 0.9970 0.9969 0.9969
0.008 9.0 7875 0.0010 1.0 1.0 1.0 1.0
0.0002 10.0 8750 0.0064 0.9985 0.9985 0.9985 0.9985
0.0001 11.0 9625 0.0038 0.9985 0.9985 0.9985 0.9985
0.0094 12.0 10500 0.0327 0.9969 0.9970 0.9969 0.9969
0.0001 13.0 11375 0.0324 0.9954 0.9955 0.9954 0.9954
0.0028 14.0 12250 0.0340 0.9969 0.9970 0.9969 0.9969

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.1
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for KandoCare/camembert-base-EVA

Finetuned
(148)
this model