camembert-base-EVA
This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0010
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.8389 | 1.0 | 875 | 0.1286 | 0.9862 | 0.9868 | 0.9862 | 0.9862 |
| 0.069 | 2.0 | 1750 | 0.0334 | 0.9954 | 0.9956 | 0.9954 | 0.9954 |
| 0.019 | 3.0 | 2625 | 0.0248 | 0.9954 | 0.9955 | 0.9954 | 0.9954 |
| 0.0103 | 4.0 | 3500 | 0.0106 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
| 0.003 | 5.0 | 4375 | 0.0357 | 0.9939 | 0.9940 | 0.9939 | 0.9939 |
| 0.0059 | 6.0 | 5250 | 0.0285 | 0.9954 | 0.9956 | 0.9954 | 0.9954 |
| 0.0087 | 7.0 | 6125 | 0.0237 | 0.9969 | 0.9970 | 0.9969 | 0.9969 |
| 0.0058 | 8.0 | 7000 | 0.0180 | 0.9969 | 0.9970 | 0.9969 | 0.9969 |
| 0.008 | 9.0 | 7875 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 10.0 | 8750 | 0.0064 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
| 0.0001 | 11.0 | 9625 | 0.0038 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
| 0.0094 | 12.0 | 10500 | 0.0327 | 0.9969 | 0.9970 | 0.9969 | 0.9969 |
| 0.0001 | 13.0 | 11375 | 0.0324 | 0.9954 | 0.9955 | 0.9954 | 0.9954 |
| 0.0028 | 14.0 | 12250 | 0.0340 | 0.9969 | 0.9970 | 0.9969 | 0.9969 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for KandoCare/camembert-base-EVA
Base model
almanach/camembert-base