|
---
|
|
license: gemma
|
|
library_name: transformers
|
|
pipeline_tag: text-generation
|
|
extra_gated_heading: Access Gemma on Hugging Face
|
|
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
|
|
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
|
Face and click below. Requests are processed immediately.
|
|
extra_gated_button_content: Acknowledge license
|
|
tags:
|
|
- conversational
|
|
- mlx
|
|
- mlx-my-repo
|
|
base_model: rtzr/ko-gemma-2-9b-it
|
|
language:
|
|
- ko
|
|
---
|
|
|
|
# KYUNGYONG/ko-gemma-2-9b-it-4bit |
|
|
|
The Model [KYUNGYONG/ko-gemma-2-9b-it-4bit](https://huggingface.co/KYUNGYONG/ko-gemma-2-9b-it-4bit) was converted to MLX format from [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) using mlx-lm version **0.21.5**. |
|
|
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-lm |
|
``` |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
model, tokenizer = load("KYUNGYONG/ko-gemma-2-9b-it-4bit") |
|
|
|
prompt="hello" |
|
|
|
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: |
|
messages = [{"role": "user", "content": prompt}] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
``` |
|
|