metadata
base_model: btaskel/Tifa-DeepsexV2-7b-MGRPO-safetensors
language:
- zh
- en
library_name: transformers
tags:
- incremental-pretraining
- sft
- reinforcement-learning
- roleplay
- cot
- mlx
- mlx-my-repo
license: apache-2.0
KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit
The Model KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit was converted to MLX format from btaskel/Tifa-DeepsexV2-7b-MGRPO-safetensors using mlx-lm version 0.21.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)