|
--- |
|
license: gemma |
|
language: |
|
- en |
|
- ko |
|
tags: |
|
- gemma-2 |
|
- KINS-ai |
|
base_model: |
|
- google/gemma-2-27b |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
# **Introduction** |
|
|
|
### About the Model |
|
|
|
We introduce ATOMIS, developed by the Korea Institute of Nuclear Safety (KINS). This model is specifically designed for the nuclear field and is a large language model (LLM) with 32 billion parameters. It achieves state-of-the-art performance among its peers on Logickor, a real-world Korean task benchmark; NuclearQA, a nuclear-domain benchmark; and RAGEval, a RAG benchmark. Please refer to the evaluation results table for details. |
|
|
|
## Key Features |
|
|
|
- **Korean Real-World use cases:** The model can understand and generate Korean text with high accuracy, making it suitable for practical scenarios. |
|
- **Specialized in the Nuclear Domain:** The model has been specifically trained on a vast, specialized corpus of nuclear data. |
|
- **RAG:** The model delivers accurate answers based on real documents through its high RAG performance. |
|
|
|
|
|
### Pre-Training |
|
|
|
We created the base model by expanding layers using a passthrough method, building on the gemma-2-27b model. Additionally, we extended the context length to 32K with RoPE and performed continuous pretraining to restore the model’s performance. |
|
In particular, to train specialized knowledge in the nuclear domain, we included the following data. |
|
|
|
- Atomic Wiki (https://atomic.snu.ac.kr) |
|
- NText (https://paperswithcode.com/dataset/ntext) |
|
- in-house data from KINS (Korea Institute of Nuclear Safety) |
|
|
|
### Post-Training |
|
|
|
The fine-tuning data includes over 1M publicly available instruction datasets as well as high-quality synthetic data. We use this dataset to perform supervised fine-tuning (SFT) and direct preference optimization (DPO). |
|
|
|
# **How to use** |
|
|
|
```python |
|
# pip install transformers==4.43.4 or later |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("KINS-ai/ATOMIS") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"KINS-ai/ATOMIS", |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "안녕하세요?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda") |
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=256) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
# **Evaluation** |
|
|
|
### Overall |
|
|
|
| Model | LogicKor | NuclearQA | RAGEval | Avg | |
|
|--------------------------------------|----- |-----|-----|-----| |
|
| **c4ai-command-r-08-2024** | 8.27 | 7.82 | 9.41 | 8.50 | |
|
| **gemma-2-27b-it** | 8.66 | 8.18 | 8.97 | 8.60 | |
|
| **Qwen2.5-32B-instruct** | 8.93 | 8.61 | 9.36 | 8.97 | |
|
| **phi-4** | 8.62 | 8.67 | 9.55 | 8.95 | |
|
| **Mistral-Small-24B-Instruct-2501** | 8.36 | 8.68 | 9.04 | 8.69 | |
|
| **Llama-3.3-70b-instruct** | 7.94 | 8.42 | 9.25 | 8.54 | |
|
| **ATOMIS** | 9.00 | 8.72 | 9.65 | **9.12** | |
|
|
|
|
|
### LogicKor |
|
We evaluated the performance using the [LogicKor](https://github.com/instructkr/LogicKor) code. As the judge model, we employed the officially recommended GPT-4-1106-preview. These scores reflect only the default zero-shot evaluation. |
|
|
|
| Model | Math | Reasoning | Coding | Writing | Understanding | Grammar | Single-turn | Multi-turn | Avg | |
|
|--------------------------------------|----- |-----|-----|-----|-----|-----|-----|-----|-----| |
|
| **c4ai-command-r-08-2024** | 6.14 | 7.36 | 9.43 | 9.64 | 9.21 | 7.86 | 8.05 | 8.52 | 8.27 | |
|
| **gemma-2-27b-it** | 8.93 | 8.29 | 8.43 | 9.29 | 9.43 | 7.57 | 8.43 | 8.88 | 8.66 | |
|
| **Qwen2.5-32B-instruct** | 8.79 | 8.64 | 9.36 | 9.50 | 9.29 | 8.00 | 8.79 | 9.10 | 8.93 | |
|
| **phi-4** | 8.79 | 9.21 | 9.86 | 9.21 | 9.00 | 5.64 | 8.50 | 8.74 | 8.62 | |
|
| **Mistral-Small-24B-Instruct-2501** | 8.00 | 8.14 | 9.36 | 9.43 | 8.50 | 6.71 | 8.29 | 8.43 | 8.36 | |
|
| **Llama-3.3-70b-instruct** | 7.43 | 6.50 | 8.79 | 8.43 | 8.64 | 7.86 | 8.14 | 7.74 | 7.94 | |
|
| **ATOMIS** | 8.36 | 8.71 | 9.79 | 9.64 | 8.29 | 9.21 | 9.14 | 8.86 | **9.00** | |
|
|
|
### NuclearQA |
|
We employed NuclearQA [1], a human-made benchmark consisting of 100 questions designed by experts to evaluate language models in the nuclear domain. |
|
|
|
We then used this question set to assess the LLM’s responses in a manner similar to the Logickor benchmark. |
|
|
|
[1] Acharya, A., Munikoti, S., Hellinger, A., Smith, S., Wagle, S. and Horawalavithana, S., 2023. NuclearQA: A Human-Made Benchmark for Language Models for the Nuclear Domain. arXiv:2310.10920. |
|
|
|
| Model | Easy | Medium | Hard | General | Scientific | Numerical | Num+Sci | Avg | |
|
|--------------------------------------|----- |-----|-----|-----|-----|-----|-----|-----| |
|
| **c4ai-command-r-08-2024** | 8.77 | 8.21 | 6.47 | 7.73 | 8.38 | 7.35 | 7.35 | 7.82 | |
|
| **gemma-2-27b-it** | 8.97 | 8.24 | 7.33 | 7.92 | 8.23 | 8.12 | 8.45 | 8.18 | |
|
| **Qwen2.5-32B-instruct** | 8.97 | 8.42 | 8.38 | 8.54 | 8.15 | 8.76 | 9.03 | 8.61 | |
|
| **phi-4** | 8.94 | 8.97 | 8.11 | 8.46 | 8.73 | 9.00 | 8.50 | 8.67 | |
|
| **Mistral-Small-24B-Instruct-2501** | 9.13 | 8.76 | 8.14 | 8.41 | 8.81 | 8.59 | 8.95 | 8.68 | |
|
| **Llama-3.3-70b-instruct** | 9.29 | 8.58 | 7.44 | 8.22 | 8.62 | 8.47 | 8.35 | 8.42 | |
|
| **ATOMIS** | 9.10 | 8.64 | 8.31 | 8.16 | 9.00 | 8.71 | 9.10 | **8.72** | |
|
|
|
### RAGEval |
|
We used RAGEval [2], a benchmark designed to evaluate RAG performance in terms of factual accuracy, using three novel metrics: Completeness, Hallucination, and Irrelevance. |
|
|
|
We evaluated performance using the [RAGEval](https://github.com/OpenBMB/RAGEval) code. As the judge model, we employed the officially recommended gpt-4o. These scores reflect only the completeness metric of the single-document QA evaluation. |
|
|
|
[2] Zhu, K., Luo, Y., Xu, D., Wang, R., Yu, S., Wang, S., Yan, Y., Liu, Z., Han, X., Liu, Z. and Sun, M., 2024. RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework. arXiv:2408.01262. |
|
|
|
| Model | Factual | Summarization | Multi-hop Reasoning | Avg | |
|
|--------------------------------------|----- |-----|-----|-----| |
|
| **c4ai-command-r-08-2024** | 1.000 | 0.913 | 0.908 | 0.941 | |
|
| **gemma-2-27b-it** | 0.987 | 0.890 | 0.814 | 0.897 | |
|
| **Qwen2.5-32B-instruct** | 0.980 | 0.906 | 0.923 | 0.936 | |
|
| **phi-4** | 1.000 | 0.931 | 0.934 | 0.955 | |
|
| **Mistral-Small-24B-Instruct-2501** | 0.980 | 0.951 | 0.781 | 0.904 | |
|
| **Llama-3.3-70b-instruct** | 0.977 | 0.907 | 0.893 | 0.925 | |
|
| **ATOMIS** | 0.993 | 0.942 | 0.960 | **0.965** | |