|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- formula-transformers |
|
- feature-extraction |
|
- formula-similarity |
|
|
|
--- |
|
|
|
# CLFE(ConMath) |
|
|
|
This is a formula embedding model trained on Latex, Presentation MathML and Content MathML of formulas: It maps formulas to a 768 dimensional dense vector space. It was introduced in https://link.springer.com/chapter/10.1007/978-981-99-7254-8_8 |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage |
|
|
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
Put 'MarkuplmTransformerForConMATH.py' into 'sentence_transfomers/models', and add 'from .MarkuplmTransformerForConMATH import MarkuplmTransformerForConMATH' into 'sentence_transfomers/models/\_init\_' |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
latex = r"13\times x" |
|
pmml = r"<math><semantics><mrow><mn>13</mn><mo>×</mo><mi>x</mi></mrow></semantics></math>" |
|
cmml = r"<math><apply><times></times><cn>13</cn><ci>x</ci></apply></math>" |
|
|
|
model = SentenceTransformer('Jyiyiyiyi/CLFE_ConMath') |
|
|
|
embedding_latex = model.encode([{'latex': latex}]) |
|
embedding_pmml = model.encode([{'mathml': pmml}]) |
|
embedding_cmml = model.encode([{'mathml': cmml}]) |
|
|
|
print('latex embedding:') |
|
print(embedding_latex) |
|
print('Presentation MathML embedding:') |
|
print(embedding_pmml) |
|
print('Content MathML embedding:') |
|
print(embedding_cmml) |
|
``` |
|
|
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Asym( |
|
(latex-0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(mathml-0): MarkuplmTransformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MarkupLMModel |
|
) |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
``` |
|
@inproceedings{wang2023math, |
|
title={Math Information Retrieval with Contrastive Learning of Formula Embeddings}, |
|
author={Wang, Jingyi and Tian, Xuedong}, |
|
booktitle={International Conference on Web Information Systems Engineering}, |
|
pages={97--107}, |
|
year={2023}, |
|
organization={Springer} |
|
} |
|
``` |