metadata
base_model: JunxiongWang/mamba_0_875_sft
tags:
- mamba
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mamba_0_875_dpo_ep3
results: []
mamba_0_875_dpo_ep3
This model is a fine-tuned version of JunxiongWang/mamba_0_875_sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.6922
- Rewards/chosen: -3.9752
- Rewards/rejected: -6.3998
- Rewards/accuracies: 0.7852
- Rewards/margins: 2.4245
- Logps/rejected: -333.8416
- Logps/chosen: -307.0094
- Logits/rejected: -2.4971
- Logits/chosen: -2.5509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1219 | 1.0466 | 2000 | 0.5598 | -1.2751 | -2.5954 | 0.7539 | 1.3204 | -295.7982 | -280.0076 | -2.6264 | -2.6813 |
0.0099 | 2.0931 | 4000 | 0.6922 | -3.9752 | -6.3998 | 0.7852 | 2.4245 | -333.8416 | -307.0094 | -2.4971 | -2.5509 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
@article{junxiongdaniele2024mambainllama,
title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
journal = {arXiv preprint arXiv:2408.15237},
year = {2024}
}