Jingyu6
add models
0da1b35
|
raw
history blame
3.03 kB
metadata
base_model: >-
  /data/junxiong/Llama-Mamba-3.2-3B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-update/
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - HuggingFaceH4/orca_dpo_pairs
  - JunxiongWang/llama3-ultrafeedback-armorm
model-index:
  - name: >-
      Llama-Mamba-3.2-3B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-update-dpo-short
    results: []

Visualize in Weights & Biases

Llama-Mamba-3.2-3B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-update-dpo-short

This model is a fine-tuned version of /data/junxiong/Llama-Mamba-3.2-3B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-update/ on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4802
  • Rewards/chosen: -2.0035
  • Rewards/rejected: -4.1751
  • Rewards/accuracies: 0.7929
  • Rewards/margins: 2.1716
  • Logps/rejected: -691.1746
  • Logps/chosen: -472.6584
  • Logits/rejected: -1.5357
  • Logits/chosen: -1.5952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5034 0.4798 2000 0.4988 -1.5060 -3.1448 0.7982 1.6388 -588.1365 -422.9025 -1.5466 -1.5856
0.4894 0.9597 4000 0.4802 -2.0035 -4.1751 0.7929 2.1716 -691.1746 -472.6584 -1.5357 -1.5952

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1