|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
datasets: |
|
- kajuma/dpo_1 |
|
--- |
|
|
|
# Model Card for JunichiroMorita/llm-jp-3-13b-it_lora_20241216 |
|
|
|
## Model Details |
|
|
|
- **Developed by:** JunichiroMorita |
|
- **Language(s) (NLP):** Japanese |
|
- **License:** Apache license 2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
## Description |
|
|
|
This model was developed for use in a competition, specifically for [松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/). |
|
|
|
## Uses |
|
|
|
```python |
|
!pip install unsloth |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install -U torch |
|
!pip install -U peft |
|
``` |
|
|
|
```python |
|
from unsloth import FastLanguageModel |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
from tqdm import tqdm |
|
import re |
|
|
|
model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = f"JunichiroMorita/llm-jp-3-13b-it_lora_20241216" |
|
|
|
HF_TOKEN = 'your_hugging_face_token' |
|
|
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN) |
|
|
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答\n')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
with open(f'./llm-jp-3-13b-it_lora_20241216_output.jsonl', 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
- [kajuma/dpo_1](https://huggingface.co/datasets/kajuma/dpo_1) |
|
|
|
### Training Procedure |
|
|
|
This model was fine-tuned using LoRA (Low-Rank Adaptation) to optimize training efficiency and minimize computational overhead while maintaining performance. The fine-tuning process utilized Japanese instruction data specifically designed for LLMs to enhance its capabilities in understanding and generating Japanese-language instructions. |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|