BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JulioSanchezD/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Cardiovascular/Metabolism/Other products sales were $3.7 billion, a decline of 5.5% as compared to the prior year.',
'What was the revenue decline percentage for Cardiovascular/Metabolism/Other products in 2023?',
"How is a membership's territory determined according to the description?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.68 | 0.6743 | 0.6729 | 0.6643 | 0.6414 |
cosine_accuracy@3 | 0.8186 | 0.81 | 0.8029 | 0.8 | 0.7871 |
cosine_accuracy@5 | 0.8614 | 0.8586 | 0.85 | 0.8443 | 0.8186 |
cosine_accuracy@10 | 0.9057 | 0.9129 | 0.9043 | 0.8957 | 0.8729 |
cosine_precision@1 | 0.68 | 0.6743 | 0.6729 | 0.6643 | 0.6414 |
cosine_precision@3 | 0.2729 | 0.27 | 0.2676 | 0.2667 | 0.2624 |
cosine_precision@5 | 0.1723 | 0.1717 | 0.17 | 0.1689 | 0.1637 |
cosine_precision@10 | 0.0906 | 0.0913 | 0.0904 | 0.0896 | 0.0873 |
cosine_recall@1 | 0.68 | 0.6743 | 0.6729 | 0.6643 | 0.6414 |
cosine_recall@3 | 0.8186 | 0.81 | 0.8029 | 0.8 | 0.7871 |
cosine_recall@5 | 0.8614 | 0.8586 | 0.85 | 0.8443 | 0.8186 |
cosine_recall@10 | 0.9057 | 0.9129 | 0.9043 | 0.8957 | 0.8729 |
cosine_ndcg@10 | 0.7936 | 0.7923 | 0.7878 | 0.7804 | 0.7591 |
cosine_mrr@10 | 0.7575 | 0.7537 | 0.7507 | 0.7435 | 0.7226 |
cosine_map@100 | 0.7613 | 0.757 | 0.7544 | 0.7472 | 0.7273 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 11 tokens
- mean: 45.6 tokens
- max: 288 tokens
- min: 9 tokens
- mean: 20.54 tokens
- max: 46 tokens
- Samples:
positive anchor Operating Expenses Our operating expenses consisted of the following:
Year Ended December 31, Increases in yield, discount rate, capitalization rate or duration used in the valuation of level 3 investments would have resulted in a lower fair value measurement, while increases in recovery rate or multiples would have resulted in a higher fair value measurement as of both December 2023 and December 2022.
What was the impact on the fair value measurement of level 3 investments when the yield, discount rate, and capitalization rate were increased?
At December 31, 2023, Ford Credit’s liquidity sources, including cash, committed asset-backed facilities, and unsecured credit facilities, totaled $56.2 billion, up $5.2 billion from year-end 2022.
What sources contribute to Ford Credit’s liquidity as of December 31, 2023, and what was their total value?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5473 | - | - | - | - | - |
0.9746 | 12 | - | 0.7821 | 0.7814 | 0.7723 | 0.7543 | 0.7229 |
1.6244 | 20 | 0.6848 | - | - | - | - | - |
1.9492 | 24 | - | 0.7906 | 0.7877 | 0.7824 | 0.7729 | 0.7519 |
2.4365 | 30 | 0.5164 | - | - | - | - | - |
2.9239 | 36 | - | 0.7921 | 0.7924 | 0.7887 | 0.7778 | 0.7587 |
3.2487 | 40 | 0.4455 | - | - | - | - | - |
3.8985 | 48 | - | 0.7936 | 0.7923 | 0.7878 | 0.7804 | 0.7591 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.41.2
- PyTorch: 2.6.0+cu126
- Accelerate: 1.4.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for JulioSanchezD/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.680
- Cosine Accuracy@3 on dim 768self-reported0.819
- Cosine Accuracy@5 on dim 768self-reported0.861
- Cosine Accuracy@10 on dim 768self-reported0.906
- Cosine Precision@1 on dim 768self-reported0.680
- Cosine Precision@3 on dim 768self-reported0.273
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.680
- Cosine Recall@3 on dim 768self-reported0.819