zephyr-7b-dpo-lora / README.md
Jerry46's picture
Model save
016b0bd
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-lora
    results: []

zephyr-7b-dpo-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5266
  • Rewards/chosen: -0.1470
  • Rewards/rejected: -0.8985
  • Rewards/accuracies: 0.7460
  • Rewards/margins: 0.7516
  • Logps/rejected: -228.2694
  • Logps/chosen: -266.1304
  • Logits/rejected: -1.9412
  • Logits/chosen: -2.0659

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5501 1.0 968 0.5560 -0.1093 -0.6400 0.7200 0.5307 -225.6847 -265.7538 -1.9901 -2.1115
0.5412 2.0 1936 0.5318 -0.1497 -0.8640 0.7420 0.7143 -227.9245 -266.1583 -1.9509 -2.0748
0.5454 3.0 2904 0.5266 -0.1470 -0.8985 0.7460 0.7516 -228.2694 -266.1304 -1.9412 -2.0659

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1