Finetuning - JeonghyunLee/kandi2-prior-abnormal_images

This pipeline was finetuned from kandinsky-community/kandinsky-2-2-prior on the JeonghyunLee/abnormal_metadata_v6 dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['An abnormal image. This is real microscopic image of integrated circuits. Add Scratch.']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipe_prior = DiffusionPipeline.from_pretrained("JeonghyunLee/kandi2-prior-abnormal_images", torch_dtype=torch.float16)
pipe_t2i = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
prompt = "An abnormal image. This is real microscopic image of integrated circuits. Add Scratch."
image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
image = pipe_t2i(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 3
  • Learning rate: 1e-05
  • Batch size: 1
  • Gradient accumulation steps: 4
  • Image resolution: 768
  • Mixed-precision: None

More information on all the CLI arguments and the environment are available on your wandb run page.

Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for JeonghyunLee/kandi2-prior-abnormal_images

Finetuned
(6)
this model

Dataset used to train JeonghyunLee/kandi2-prior-abnormal_images