Benchmark-v0 / test.py
Junyin's picture
Add files using upload-large-folder tool
05744dc verified
import argparse
import json
import os
import sys
from typing import List
import torch
import transformers
from peft import PeftModel
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils import *
from collator import TestCollator
from prompt import all_prompt
from evaluate import get_topk_results, get_metrics_results
def test(args):
set_seed(args.seed)
print(vars(args))
device_map = {"": args.gpu_id}
device = torch.device("cuda",args.gpu_id)
tokenizer = LlamaTokenizer.from_pretrained(args.ckpt_path)
if args.lora:
model = LlamaForCausalLM.from_pretrained(
args.base_model,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map=device_map,
)
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(
model,
args.ckpt_path,
torch_dtype=torch.bfloat16,
device_map=device_map,
)
else:
model = LlamaForCausalLM.from_pretrained(
args.ckpt_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map=device_map,
)
# assert model.config.vocab_size == len(tokenizer)
if args.test_prompt_ids == "all":
if args.test_task.lower() == "seqrec":
prompt_ids = range(len(all_prompt["seqrec"]))
elif args.test_task.lower() == "itemsearch":
prompt_ids = range(len(all_prompt["itemsearch"]))
elif args.test_task.lower() == "fusionseqrec":
prompt_ids = range(len(all_prompt["fusionseqrec"]))
else:
prompt_ids = [int(_) for _ in args.test_prompt_ids.split(",")]
test_data = load_test_dataset(args)
collator = TestCollator(args, tokenizer)
all_items = test_data.get_all_items()
prefix_allowed_tokens = test_data.get_prefix_allowed_tokens_fn(tokenizer)
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, collate_fn=collator,
shuffle=True, num_workers=4, pin_memory=True)
print("data num:", len(test_data))
model.eval()
metrics = args.metrics.split(",")
all_prompt_results = []
with torch.no_grad():
for prompt_id in prompt_ids:
test_loader.dataset.set_prompt(prompt_id)
metrics_results = {}
total = 0
for step, batch in enumerate(tqdm(test_loader)):
inputs = batch[0].to(device)
targets = batch[1]
total += len(targets)
output = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=10,
# max_length=10,
prefix_allowed_tokens_fn=prefix_allowed_tokens,
num_beams=args.num_beams,
num_return_sequences=args.num_beams,
output_scores=True,
return_dict_in_generate=True,
early_stopping=True,
)
output_ids = output["sequences"]
scores = output["sequences_scores"]
output = tokenizer.batch_decode(
output_ids, skip_special_tokens=True
)
# print(output)
topk_res = get_topk_results(output,scores,targets,args.num_beams,
all_items=all_items if args.filter_items else None)
batch_metrics_res = get_metrics_results(topk_res, metrics)
# print(batch_metrics_res)
for m, res in batch_metrics_res.items():
if m not in metrics_results:
metrics_results[m] = res
else:
metrics_results[m] += res
if (step+1)%10 == 0:
temp={}
for m in metrics_results:
temp[m] = metrics_results[m] / total
print(temp)
for m in metrics_results:
metrics_results[m] = metrics_results[m] / total
all_prompt_results.append(metrics_results)
print("======================================================")
print("Prompt {} results: ".format(prompt_id), metrics_results)
print("======================================================")
print("")
mean_results = {}
min_results = {}
max_results = {}
for m in metrics:
all_res = [_[m] for _ in all_prompt_results]
mean_results[m] = sum(all_res)/len(all_res)
min_results[m] = min(all_res)
max_results[m] = max(all_res)
print("======================================================")
print("Mean results: ", mean_results)
print("Min results: ", min_results)
print("Max results: ", max_results)
print("======================================================")
save_data={}
save_data["test_prompt_ids"] = args.test_prompt_ids
save_data["mean_results"] = mean_results
save_data["min_results"] = min_results
save_data["max_results"] = max_results
save_data["all_prompt_results"] = all_prompt_results
with open(args.results_file, "w") as f:
json.dump(save_data, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LLMRec_test")
parser = parse_global_args(parser)
parser = parse_dataset_args(parser)
parser = parse_test_args(parser)
args = parser.parse_args()
test(args)