File size: 5,737 Bytes
05744dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import argparse
import json
import os
import sys
from typing import List
import torch
import transformers
from peft import PeftModel
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils import *
from collator import TestCollator
from prompt import all_prompt
from evaluate import get_topk_results, get_metrics_results
def test(args):
set_seed(args.seed)
print(vars(args))
device_map = {"": args.gpu_id}
device = torch.device("cuda",args.gpu_id)
tokenizer = LlamaTokenizer.from_pretrained(args.ckpt_path)
if args.lora:
model = LlamaForCausalLM.from_pretrained(
args.base_model,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map=device_map,
)
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(
model,
args.ckpt_path,
torch_dtype=torch.bfloat16,
device_map=device_map,
)
else:
model = LlamaForCausalLM.from_pretrained(
args.ckpt_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map=device_map,
)
# assert model.config.vocab_size == len(tokenizer)
if args.test_prompt_ids == "all":
if args.test_task.lower() == "seqrec":
prompt_ids = range(len(all_prompt["seqrec"]))
elif args.test_task.lower() == "itemsearch":
prompt_ids = range(len(all_prompt["itemsearch"]))
elif args.test_task.lower() == "fusionseqrec":
prompt_ids = range(len(all_prompt["fusionseqrec"]))
else:
prompt_ids = [int(_) for _ in args.test_prompt_ids.split(",")]
test_data = load_test_dataset(args)
collator = TestCollator(args, tokenizer)
all_items = test_data.get_all_items()
prefix_allowed_tokens = test_data.get_prefix_allowed_tokens_fn(tokenizer)
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, collate_fn=collator,
shuffle=True, num_workers=4, pin_memory=True)
print("data num:", len(test_data))
model.eval()
metrics = args.metrics.split(",")
all_prompt_results = []
with torch.no_grad():
for prompt_id in prompt_ids:
test_loader.dataset.set_prompt(prompt_id)
metrics_results = {}
total = 0
for step, batch in enumerate(tqdm(test_loader)):
inputs = batch[0].to(device)
targets = batch[1]
total += len(targets)
output = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=10,
# max_length=10,
prefix_allowed_tokens_fn=prefix_allowed_tokens,
num_beams=args.num_beams,
num_return_sequences=args.num_beams,
output_scores=True,
return_dict_in_generate=True,
early_stopping=True,
)
output_ids = output["sequences"]
scores = output["sequences_scores"]
output = tokenizer.batch_decode(
output_ids, skip_special_tokens=True
)
# print(output)
topk_res = get_topk_results(output,scores,targets,args.num_beams,
all_items=all_items if args.filter_items else None)
batch_metrics_res = get_metrics_results(topk_res, metrics)
# print(batch_metrics_res)
for m, res in batch_metrics_res.items():
if m not in metrics_results:
metrics_results[m] = res
else:
metrics_results[m] += res
if (step+1)%10 == 0:
temp={}
for m in metrics_results:
temp[m] = metrics_results[m] / total
print(temp)
for m in metrics_results:
metrics_results[m] = metrics_results[m] / total
all_prompt_results.append(metrics_results)
print("======================================================")
print("Prompt {} results: ".format(prompt_id), metrics_results)
print("======================================================")
print("")
mean_results = {}
min_results = {}
max_results = {}
for m in metrics:
all_res = [_[m] for _ in all_prompt_results]
mean_results[m] = sum(all_res)/len(all_res)
min_results[m] = min(all_res)
max_results[m] = max(all_res)
print("======================================================")
print("Mean results: ", mean_results)
print("Min results: ", min_results)
print("Max results: ", max_results)
print("======================================================")
save_data={}
save_data["test_prompt_ids"] = args.test_prompt_ids
save_data["mean_results"] = mean_results
save_data["min_results"] = min_results
save_data["max_results"] = max_results
save_data["all_prompt_results"] = all_prompt_results
with open(args.results_file, "w") as f:
json.dump(save_data, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LLMRec_test")
parser = parse_global_args(parser)
parser = parse_dataset_args(parser)
parser = parse_test_args(parser)
args = parser.parse_args()
test(args)
|