|
import os |
|
import sys |
|
import traceback |
|
import queue |
|
import threading |
|
import time |
|
import numpy as np |
|
import itertools |
|
from pathlib import Path |
|
from core import pathex |
|
from core import imagelib |
|
import cv2 |
|
import models |
|
from core.interact import interact as io |
|
|
|
def trainerThread (s2c, c2s, e, |
|
model_class_name = None, |
|
saved_models_path = None, |
|
training_data_src_path = None, |
|
training_data_dst_path = None, |
|
pretraining_data_path = None, |
|
pretrained_model_path = None, |
|
no_preview=False, |
|
force_model_name=None, |
|
force_gpu_idxs=None, |
|
cpu_only=None, |
|
silent_start=False, |
|
execute_programs = None, |
|
debug=False, |
|
**kwargs): |
|
while True: |
|
try: |
|
start_time = time.time() |
|
|
|
save_interval_min = 25 |
|
|
|
if not training_data_src_path.exists(): |
|
training_data_src_path.mkdir(exist_ok=True, parents=True) |
|
|
|
if not training_data_dst_path.exists(): |
|
training_data_dst_path.mkdir(exist_ok=True, parents=True) |
|
|
|
if not saved_models_path.exists(): |
|
saved_models_path.mkdir(exist_ok=True, parents=True) |
|
|
|
model = models.import_model(model_class_name)( |
|
is_training=True, |
|
saved_models_path=saved_models_path, |
|
training_data_src_path=training_data_src_path, |
|
training_data_dst_path=training_data_dst_path, |
|
pretraining_data_path=pretraining_data_path, |
|
pretrained_model_path=pretrained_model_path, |
|
no_preview=no_preview, |
|
force_model_name=force_model_name, |
|
force_gpu_idxs=force_gpu_idxs, |
|
cpu_only=cpu_only, |
|
silent_start=silent_start, |
|
debug=debug) |
|
|
|
is_reached_goal = model.is_reached_iter_goal() |
|
|
|
shared_state = { 'after_save' : False } |
|
loss_string = "" |
|
save_iter = model.get_iter() |
|
def model_save(): |
|
if not debug and not is_reached_goal: |
|
io.log_info ("Saving....", end='\r') |
|
model.save() |
|
shared_state['after_save'] = True |
|
|
|
def model_backup(): |
|
if not debug and not is_reached_goal: |
|
model.create_backup() |
|
|
|
def send_preview(): |
|
if not debug: |
|
previews = model.get_previews() |
|
c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } ) |
|
else: |
|
previews = [( 'debug, press update for new', model.debug_one_iter())] |
|
c2s.put ( {'op':'show', 'previews': previews} ) |
|
e.set() |
|
|
|
if model.get_target_iter() != 0: |
|
if is_reached_goal: |
|
io.log_info('Model already trained to target iteration. You can use preview.') |
|
else: |
|
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) ) |
|
else: |
|
io.log_info('Starting. Press "Enter" to stop training and save model.') |
|
|
|
last_save_time = time.time() |
|
|
|
execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ] |
|
|
|
for i in itertools.count(0,1): |
|
if not debug: |
|
cur_time = time.time() |
|
|
|
for x in execute_programs: |
|
prog_time, prog, last_time = x |
|
exec_prog = False |
|
if prog_time > 0 and (cur_time - start_time) >= prog_time: |
|
x[0] = 0 |
|
exec_prog = True |
|
elif prog_time < 0 and (cur_time - last_time) >= -prog_time: |
|
x[2] = cur_time |
|
exec_prog = True |
|
|
|
if exec_prog: |
|
try: |
|
exec(prog) |
|
except Exception as e: |
|
print("Unable to execute program: %s" % (prog) ) |
|
|
|
if not is_reached_goal: |
|
|
|
if model.get_iter() == 0: |
|
io.log_info("") |
|
io.log_info("Trying to do the first iteration. If an error occurs, reduce the model parameters.") |
|
io.log_info("") |
|
|
|
if sys.platform[0:3] == 'win': |
|
io.log_info("!!!") |
|
io.log_info("Windows 10 users IMPORTANT notice. You should set this setting in order to work correctly.") |
|
io.log_info("https://i.imgur.com/B7cmDCB.jpg") |
|
io.log_info("!!!") |
|
|
|
iter, iter_time = model.train_one_iter() |
|
|
|
loss_history = model.get_loss_history() |
|
time_str = time.strftime("[%H:%M:%S]") |
|
if iter_time >= 10: |
|
loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, iter, '{:0.4f}'.format(iter_time) ) |
|
else: |
|
loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, iter, int(iter_time*1000) ) |
|
|
|
if shared_state['after_save']: |
|
shared_state['after_save'] = False |
|
|
|
mean_loss = np.mean ( loss_history[save_iter:iter], axis=0) |
|
|
|
for loss_value in mean_loss: |
|
loss_string += "[%.4f]" % (loss_value) |
|
|
|
io.log_info (loss_string) |
|
|
|
save_iter = iter |
|
else: |
|
for loss_value in loss_history[-1]: |
|
loss_string += "[%.4f]" % (loss_value) |
|
|
|
if io.is_colab(): |
|
io.log_info ('\r' + loss_string, end='') |
|
else: |
|
io.log_info (loss_string, end='\r') |
|
|
|
if model.get_iter() == 1: |
|
model_save() |
|
|
|
if model.get_target_iter() != 0 and model.is_reached_iter_goal(): |
|
io.log_info ('Reached target iteration.') |
|
model_save() |
|
is_reached_goal = True |
|
io.log_info ('You can use preview now.') |
|
|
|
need_save = False |
|
while time.time() - last_save_time >= save_interval_min*60: |
|
last_save_time += save_interval_min*60 |
|
need_save = True |
|
|
|
if not is_reached_goal and need_save: |
|
model_save() |
|
send_preview() |
|
|
|
if i==0: |
|
if is_reached_goal: |
|
model.pass_one_iter() |
|
send_preview() |
|
|
|
if debug: |
|
time.sleep(0.005) |
|
|
|
while not s2c.empty(): |
|
input = s2c.get() |
|
op = input['op'] |
|
if op == 'save': |
|
model_save() |
|
elif op == 'backup': |
|
model_backup() |
|
elif op == 'preview': |
|
if is_reached_goal: |
|
model.pass_one_iter() |
|
send_preview() |
|
elif op == 'close': |
|
model_save() |
|
i = -1 |
|
break |
|
|
|
if i == -1: |
|
break |
|
|
|
|
|
|
|
model.finalize() |
|
|
|
except Exception as e: |
|
print ('Error: %s' % (str(e))) |
|
traceback.print_exc() |
|
break |
|
c2s.put ( {'op':'close'} ) |
|
|
|
|
|
|
|
def main(**kwargs): |
|
io.log_info ("Running trainer.\r\n") |
|
|
|
no_preview = kwargs.get('no_preview', False) |
|
|
|
s2c = queue.Queue() |
|
c2s = queue.Queue() |
|
|
|
e = threading.Event() |
|
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e), kwargs=kwargs ) |
|
thread.start() |
|
|
|
e.wait() |
|
|
|
if no_preview: |
|
while True: |
|
if not c2s.empty(): |
|
input = c2s.get() |
|
op = input.get('op','') |
|
if op == 'close': |
|
break |
|
try: |
|
io.process_messages(0.1) |
|
except KeyboardInterrupt: |
|
s2c.put ( {'op': 'close'} ) |
|
else: |
|
wnd_name = "Training preview" |
|
io.named_window(wnd_name) |
|
io.capture_keys(wnd_name) |
|
|
|
previews = None |
|
loss_history = None |
|
selected_preview = 0 |
|
update_preview = False |
|
is_showing = False |
|
is_waiting_preview = False |
|
show_last_history_iters_count = 0 |
|
iter = 0 |
|
while True: |
|
if not c2s.empty(): |
|
input = c2s.get() |
|
op = input['op'] |
|
if op == 'show': |
|
is_waiting_preview = False |
|
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None |
|
previews = input['previews'] if 'previews' in input.keys() else None |
|
iter = input['iter'] if 'iter' in input.keys() else 0 |
|
if previews is not None: |
|
max_w = 0 |
|
max_h = 0 |
|
for (preview_name, preview_rgb) in previews: |
|
(h, w, c) = preview_rgb.shape |
|
max_h = max (max_h, h) |
|
max_w = max (max_w, w) |
|
|
|
max_size = 800 |
|
if max_h > max_size: |
|
max_w = int( max_w / (max_h / max_size) ) |
|
max_h = max_size |
|
|
|
|
|
for preview in previews[:]: |
|
(preview_name, preview_rgb) = preview |
|
(h, w, c) = preview_rgb.shape |
|
if h != max_h or w != max_w: |
|
previews.remove(preview) |
|
previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) ) |
|
selected_preview = selected_preview % len(previews) |
|
update_preview = True |
|
elif op == 'close': |
|
break |
|
|
|
if update_preview: |
|
update_preview = False |
|
|
|
selected_preview_name = previews[selected_preview][0] |
|
selected_preview_rgb = previews[selected_preview][1] |
|
(h,w,c) = selected_preview_rgb.shape |
|
|
|
|
|
head_lines = [ |
|
'[s]:save [b]:backup [enter]:exit', |
|
'[p]:update [space]:next preview [l]:change history range', |
|
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) ) |
|
] |
|
head_line_height = 15 |
|
head_height = len(head_lines) * head_line_height |
|
head = np.ones ( (head_height,w,c) ) * 0.1 |
|
|
|
for i in range(0, len(head_lines)): |
|
t = i*head_line_height |
|
b = (i+1)*head_line_height |
|
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c ) |
|
|
|
final = head |
|
|
|
if loss_history is not None: |
|
if show_last_history_iters_count == 0: |
|
loss_history_to_show = loss_history |
|
else: |
|
loss_history_to_show = loss_history[-show_last_history_iters_count:] |
|
|
|
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, w, c) |
|
final = np.concatenate ( [final, lh_img], axis=0 ) |
|
|
|
final = np.concatenate ( [final, selected_preview_rgb], axis=0 ) |
|
final = np.clip(final, 0, 1) |
|
|
|
io.show_image( wnd_name, (final*255).astype(np.uint8) ) |
|
is_showing = True |
|
|
|
key_events = io.get_key_events(wnd_name) |
|
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False) |
|
|
|
if key == ord('\n') or key == ord('\r'): |
|
s2c.put ( {'op': 'close'} ) |
|
elif key == ord('s'): |
|
s2c.put ( {'op': 'save'} ) |
|
elif key == ord('b'): |
|
s2c.put ( {'op': 'backup'} ) |
|
elif key == ord('p'): |
|
if not is_waiting_preview: |
|
is_waiting_preview = True |
|
s2c.put ( {'op': 'preview'} ) |
|
elif key == ord('l'): |
|
if show_last_history_iters_count == 0: |
|
show_last_history_iters_count = 5000 |
|
elif show_last_history_iters_count == 5000: |
|
show_last_history_iters_count = 10000 |
|
elif show_last_history_iters_count == 10000: |
|
show_last_history_iters_count = 50000 |
|
elif show_last_history_iters_count == 50000: |
|
show_last_history_iters_count = 100000 |
|
elif show_last_history_iters_count == 100000: |
|
show_last_history_iters_count = 0 |
|
update_preview = True |
|
elif key == ord(' '): |
|
selected_preview = (selected_preview + 1) % len(previews) |
|
update_preview = True |
|
|
|
try: |
|
io.process_messages(0.1) |
|
except KeyboardInterrupt: |
|
s2c.put ( {'op': 'close'} ) |
|
|
|
io.destroy_all_windows() |