File size: 14,524 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import sys
import traceback
import queue
import threading
import time
import numpy as np
import itertools
from pathlib import Path
from core import pathex
from core import imagelib
import cv2
import models
from core.interact import interact as io

def trainerThread (s2c, c2s, e,
                    model_class_name = None,
                    saved_models_path = None,
                    training_data_src_path = None,
                    training_data_dst_path = None,
                    pretraining_data_path = None,
                    pretrained_model_path = None,
                    no_preview=False,
                    force_model_name=None,
                    force_gpu_idxs=None,
                    cpu_only=None,
                    silent_start=False,
                    execute_programs = None,
                    debug=False,
                    **kwargs):
    while True:
        try:
            start_time = time.time()

            save_interval_min = 25

            if not training_data_src_path.exists():
                training_data_src_path.mkdir(exist_ok=True, parents=True)

            if not training_data_dst_path.exists():
                training_data_dst_path.mkdir(exist_ok=True, parents=True)

            if not saved_models_path.exists():
                saved_models_path.mkdir(exist_ok=True, parents=True)
                            
            model = models.import_model(model_class_name)(
                        is_training=True,
                        saved_models_path=saved_models_path,
                        training_data_src_path=training_data_src_path,
                        training_data_dst_path=training_data_dst_path,
                        pretraining_data_path=pretraining_data_path,
                        pretrained_model_path=pretrained_model_path,
                        no_preview=no_preview,
                        force_model_name=force_model_name,
                        force_gpu_idxs=force_gpu_idxs,
                        cpu_only=cpu_only,
                        silent_start=silent_start,
                        debug=debug)

            is_reached_goal = model.is_reached_iter_goal()

            shared_state = { 'after_save' : False }
            loss_string = ""
            save_iter =  model.get_iter()
            def model_save():
                if not debug and not is_reached_goal:
                    io.log_info ("Saving....", end='\r')
                    model.save()
                    shared_state['after_save'] = True
                    
            def model_backup():
                if not debug and not is_reached_goal:
                    model.create_backup()             

            def send_preview():
                if not debug:
                    previews = model.get_previews()
                    c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
                else:
                    previews = [( 'debug, press update for new', model.debug_one_iter())]
                    c2s.put ( {'op':'show', 'previews': previews} )
                e.set() #Set the GUI Thread as Ready

            if model.get_target_iter() != 0:
                if is_reached_goal:
                    io.log_info('Model already trained to target iteration. You can use preview.')
                else:
                    io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter()  ) )
            else:
                io.log_info('Starting. Press "Enter" to stop training and save model.')

            last_save_time = time.time()

            execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ]

            for i in itertools.count(0,1):
                if not debug:
                    cur_time = time.time()

                    for x in execute_programs:
                        prog_time, prog, last_time = x
                        exec_prog = False
                        if prog_time > 0 and (cur_time - start_time) >= prog_time:
                            x[0] = 0
                            exec_prog = True
                        elif prog_time < 0 and (cur_time - last_time)  >= -prog_time:
                            x[2] = cur_time
                            exec_prog = True

                        if exec_prog:
                            try:
                                exec(prog)
                            except Exception as e:
                                print("Unable to execute program: %s" % (prog) )

                    if not is_reached_goal:

                        if model.get_iter() == 0:
                            io.log_info("")
                            io.log_info("Trying to do the first iteration. If an error occurs, reduce the model parameters.")
                            io.log_info("")
                            
                            if sys.platform[0:3] == 'win':
                                io.log_info("!!!")
                                io.log_info("Windows 10 users IMPORTANT notice. You should set this setting in order to work correctly.")
                                io.log_info("https://i.imgur.com/B7cmDCB.jpg")
                                io.log_info("!!!")

                        iter, iter_time = model.train_one_iter()

                        loss_history = model.get_loss_history()
                        time_str = time.strftime("[%H:%M:%S]")
                        if iter_time >= 10:
                            loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, iter, '{:0.4f}'.format(iter_time) )
                        else:
                            loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, iter, int(iter_time*1000) )

                        if shared_state['after_save']:
                            shared_state['after_save'] = False
                            
                            mean_loss = np.mean ( loss_history[save_iter:iter], axis=0)

                            for loss_value in mean_loss:
                                loss_string += "[%.4f]" % (loss_value)

                            io.log_info (loss_string)

                            save_iter = iter
                        else:
                            for loss_value in loss_history[-1]:
                                loss_string += "[%.4f]" % (loss_value)

                            if io.is_colab():
                                io.log_info ('\r' + loss_string, end='')
                            else:
                                io.log_info (loss_string, end='\r')

                        if model.get_iter() == 1:
                            model_save()

                        if model.get_target_iter() != 0 and model.is_reached_iter_goal():
                            io.log_info ('Reached target iteration.')
                            model_save()
                            is_reached_goal = True
                            io.log_info ('You can use preview now.')
                
                need_save = False
                while time.time() - last_save_time >= save_interval_min*60:
                    last_save_time += save_interval_min*60
                    need_save = True
                
                if not is_reached_goal and need_save:
                    model_save()
                    send_preview()

                if i==0:
                    if is_reached_goal:
                        model.pass_one_iter()
                    send_preview()

                if debug:
                    time.sleep(0.005)

                while not s2c.empty():
                    input = s2c.get()
                    op = input['op']
                    if op == 'save':
                        model_save()
                    elif op == 'backup':
                        model_backup()
                    elif op == 'preview':
                        if is_reached_goal:
                            model.pass_one_iter()
                        send_preview()
                    elif op == 'close':
                        model_save()
                        i = -1
                        break

                if i == -1:
                    break



            model.finalize()

        except Exception as e:
            print ('Error: %s' % (str(e)))
            traceback.print_exc()
        break
    c2s.put ( {'op':'close'} )



def main(**kwargs):
    io.log_info ("Running trainer.\r\n")

    no_preview = kwargs.get('no_preview', False)

    s2c = queue.Queue()
    c2s = queue.Queue()

    e = threading.Event()
    thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e), kwargs=kwargs )
    thread.start()

    e.wait() #Wait for inital load to occur.

    if no_preview:
        while True:
            if not c2s.empty():
                input = c2s.get()
                op = input.get('op','')
                if op == 'close':
                    break
            try:
                io.process_messages(0.1)
            except KeyboardInterrupt:
                s2c.put ( {'op': 'close'} )
    else:
        wnd_name = "Training preview"
        io.named_window(wnd_name)
        io.capture_keys(wnd_name)

        previews = None
        loss_history = None
        selected_preview = 0
        update_preview = False
        is_showing = False
        is_waiting_preview = False
        show_last_history_iters_count = 0
        iter = 0
        while True:
            if not c2s.empty():
                input = c2s.get()
                op = input['op']
                if op == 'show':
                    is_waiting_preview = False
                    loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
                    previews = input['previews'] if 'previews' in input.keys() else None
                    iter = input['iter'] if 'iter' in input.keys() else 0
                    if previews is not None:
                        max_w = 0
                        max_h = 0
                        for (preview_name, preview_rgb) in previews:
                            (h, w, c) = preview_rgb.shape
                            max_h = max (max_h, h)
                            max_w = max (max_w, w)

                        max_size = 800
                        if max_h > max_size:
                            max_w = int( max_w / (max_h / max_size) )
                            max_h = max_size

                        #make all previews size equal
                        for preview in previews[:]:
                            (preview_name, preview_rgb) = preview
                            (h, w, c) = preview_rgb.shape
                            if h != max_h or w != max_w:
                                previews.remove(preview)
                                previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
                        selected_preview = selected_preview % len(previews)
                        update_preview = True
                elif op == 'close':
                    break

            if update_preview:
                update_preview = False

                selected_preview_name = previews[selected_preview][0]
                selected_preview_rgb = previews[selected_preview][1]
                (h,w,c) = selected_preview_rgb.shape

                # HEAD
                head_lines = [
                    '[s]:save [b]:backup [enter]:exit',
                    '[p]:update [space]:next preview [l]:change history range',
                    'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
                    ]
                head_line_height = 15
                head_height = len(head_lines) * head_line_height
                head = np.ones ( (head_height,w,c) ) * 0.1

                for i in range(0, len(head_lines)):
                    t = i*head_line_height
                    b = (i+1)*head_line_height
                    head[t:b, 0:w] += imagelib.get_text_image (  (head_line_height,w,c) , head_lines[i], color=[0.8]*c )

                final = head

                if loss_history is not None:
                    if show_last_history_iters_count == 0:
                        loss_history_to_show = loss_history
                    else:
                        loss_history_to_show = loss_history[-show_last_history_iters_count:]

                    lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, w, c)
                    final = np.concatenate ( [final, lh_img], axis=0 )

                final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
                final = np.clip(final, 0, 1)

                io.show_image( wnd_name, (final*255).astype(np.uint8) )
                is_showing = True

            key_events = io.get_key_events(wnd_name)
            key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)

            if key == ord('\n') or key == ord('\r'):
                s2c.put ( {'op': 'close'} )
            elif key == ord('s'):
                s2c.put ( {'op': 'save'} )
            elif key == ord('b'):
                s2c.put ( {'op': 'backup'} )
            elif key == ord('p'):
                if not is_waiting_preview:
                    is_waiting_preview = True
                    s2c.put ( {'op': 'preview'} )
            elif key == ord('l'):
                if show_last_history_iters_count == 0:
                    show_last_history_iters_count = 5000
                elif show_last_history_iters_count == 5000:
                    show_last_history_iters_count = 10000
                elif show_last_history_iters_count == 10000:
                    show_last_history_iters_count = 50000
                elif show_last_history_iters_count == 50000:
                    show_last_history_iters_count = 100000
                elif show_last_history_iters_count == 100000:
                    show_last_history_iters_count = 0
                update_preview = True
            elif key == ord(' '):
                selected_preview = (selected_preview + 1) % len(previews)
                update_preview = True

            try:
                io.process_messages(0.1)
            except KeyboardInterrupt:
                s2c.put ( {'op': 'close'} )

        io.destroy_all_windows()