|
import math |
|
import multiprocessing |
|
import operator |
|
import os |
|
import sys |
|
import tempfile |
|
from functools import cmp_to_key |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
from numpy import linalg as npla |
|
|
|
from core import imagelib, mathlib, pathex |
|
from core.cv2ex import * |
|
from core.imagelib import estimate_sharpness |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor |
|
from core.leras import nn |
|
from DFLIMG import * |
|
from facelib import LandmarksProcessor |
|
|
|
|
|
class BlurEstimatorSubprocessor(Subprocessor): |
|
class Cli(Subprocessor.Cli): |
|
def on_initialize(self, client_dict): |
|
self.estimate_motion_blur = client_dict['estimate_motion_blur'] |
|
|
|
|
|
def process_data(self, data): |
|
filepath = Path( data[0] ) |
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
self.log_err (f"{filepath.name} is not a dfl image file") |
|
return [ str(filepath), 0 ] |
|
else: |
|
image = cv2_imread( str(filepath) ) |
|
|
|
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks()) |
|
image = (image*face_mask).astype(np.uint8) |
|
|
|
|
|
if self.estimate_motion_blur: |
|
value = cv2.Laplacian(image, cv2.CV_64F, ksize=11).var() |
|
else: |
|
value = estimate_sharpness(image) |
|
|
|
return [ str(filepath), value ] |
|
|
|
|
|
|
|
def get_data_name (self, data): |
|
|
|
return data[0] |
|
|
|
|
|
def __init__(self, input_data, estimate_motion_blur=False ): |
|
self.input_data = input_data |
|
self.estimate_motion_blur = estimate_motion_blur |
|
self.img_list = [] |
|
self.trash_img_list = [] |
|
super().__init__('BlurEstimator', BlurEstimatorSubprocessor.Cli, 60) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("", len (self.input_data)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close () |
|
|
|
|
|
def process_info_generator(self): |
|
cpu_count = multiprocessing.cpu_count() |
|
io.log_info(f'Running on {cpu_count} CPUs') |
|
|
|
for i in range(cpu_count): |
|
yield 'CPU%d' % (i), {}, {'estimate_motion_blur':self.estimate_motion_blur} |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.input_data) > 0: |
|
return self.input_data.pop(0) |
|
|
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.input_data.insert(0, data) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
if result[1] == 0: |
|
self.trash_img_list.append ( result ) |
|
else: |
|
self.img_list.append ( result ) |
|
|
|
io.progress_bar_inc(1) |
|
|
|
|
|
def get_result(self): |
|
return self.img_list, self.trash_img_list |
|
|
|
|
|
def sort_by_blur(input_path): |
|
io.log_info ("Sorting by blur...") |
|
|
|
img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ] |
|
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list).run() |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
def sort_by_motion_blur(input_path): |
|
io.log_info ("Sorting by motion blur...") |
|
|
|
img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ] |
|
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list, estimate_motion_blur=True).run() |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
def sort_by_face_yaw(input_path): |
|
io.log_info ("Sorting by face yaw...") |
|
img_list = [] |
|
trash_img_list = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
trash_img_list.append ( [str(filepath)] ) |
|
continue |
|
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] ) |
|
|
|
img_list.append( [str(filepath), yaw ] ) |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
def sort_by_face_pitch(input_path): |
|
io.log_info ("Sorting by face pitch...") |
|
img_list = [] |
|
trash_img_list = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
trash_img_list.append ( [str(filepath)] ) |
|
continue |
|
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] ) |
|
|
|
img_list.append( [str(filepath), pitch ] ) |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
def sort_by_face_source_rect_size(input_path): |
|
io.log_info ("Sorting by face rect size...") |
|
img_list = [] |
|
trash_img_list = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
trash_img_list.append ( [str(filepath)] ) |
|
continue |
|
|
|
source_rect = dflimg.get_source_rect() |
|
rect_area = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32)) |
|
|
|
img_list.append( [str(filepath), rect_area ] ) |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
|
|
|
|
class HistSsimSubprocessor(Subprocessor): |
|
class Cli(Subprocessor.Cli): |
|
|
|
def process_data(self, data): |
|
img_list = [] |
|
for x in data: |
|
img = cv2_imread(x) |
|
img_list.append ([x, cv2.calcHist([img], [0], None, [256], [0, 256]), |
|
cv2.calcHist([img], [1], None, [256], [0, 256]), |
|
cv2.calcHist([img], [2], None, [256], [0, 256]) |
|
]) |
|
|
|
img_list_len = len(img_list) |
|
for i in range(img_list_len-1): |
|
min_score = float("inf") |
|
j_min_score = i+1 |
|
for j in range(i+1,len(img_list)): |
|
score = cv2.compareHist(img_list[i][1], img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) + \ |
|
cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) + \ |
|
cv2.compareHist(img_list[i][3], img_list[j][3], cv2.HISTCMP_BHATTACHARYYA) |
|
if score < min_score: |
|
min_score = score |
|
j_min_score = j |
|
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1] |
|
|
|
self.progress_bar_inc(1) |
|
|
|
return img_list |
|
|
|
|
|
def get_data_name (self, data): |
|
return "Bunch of images" |
|
|
|
|
|
def __init__(self, img_list ): |
|
self.img_list = img_list |
|
self.img_list_len = len(img_list) |
|
|
|
slice_count = 20000 |
|
sliced_count = self.img_list_len // slice_count |
|
|
|
if sliced_count > 12: |
|
sliced_count = 11.9 |
|
slice_count = int(self.img_list_len / sliced_count) |
|
sliced_count = self.img_list_len // slice_count |
|
|
|
self.img_chunks_list = [ self.img_list[i*slice_count : (i+1)*slice_count] for i in range(sliced_count) ] + \ |
|
[ self.img_list[sliced_count*slice_count:] ] |
|
|
|
self.result = [] |
|
super().__init__('HistSsim', HistSsimSubprocessor.Cli, 0) |
|
|
|
|
|
def process_info_generator(self): |
|
cpu_count = len(self.img_chunks_list) |
|
io.log_info(f'Running on {cpu_count} threads') |
|
for i in range(cpu_count): |
|
yield 'CPU%d' % (i), {'i':i}, {} |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Sorting", len(self.img_list)) |
|
io.progress_bar_inc(len(self.img_chunks_list)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.img_chunks_list) > 0: |
|
return self.img_chunks_list.pop(0) |
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
raise Exception("Fail to process data. Decrease number of images and try again.") |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
self.result += result |
|
return 0 |
|
|
|
|
|
def get_result(self): |
|
return self.result |
|
|
|
def sort_by_hist(input_path): |
|
io.log_info ("Sorting by histogram similarity...") |
|
img_list = HistSsimSubprocessor(pathex.get_image_paths(input_path)).run() |
|
return img_list, [] |
|
|
|
class HistDissimSubprocessor(Subprocessor): |
|
class Cli(Subprocessor.Cli): |
|
|
|
def on_initialize(self, client_dict): |
|
self.img_list = client_dict['img_list'] |
|
self.img_list_len = len(self.img_list) |
|
|
|
|
|
def process_data(self, data): |
|
i = data[0] |
|
score_total = 0 |
|
for j in range( 0, self.img_list_len): |
|
if i == j: |
|
continue |
|
score_total += cv2.compareHist(self.img_list[i][1], self.img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) |
|
|
|
return score_total |
|
|
|
|
|
def get_data_name (self, data): |
|
|
|
return self.img_list[data[0]][0] |
|
|
|
|
|
def __init__(self, img_list ): |
|
self.img_list = img_list |
|
self.img_list_range = [i for i in range(0, len(img_list) )] |
|
self.result = [] |
|
super().__init__('HistDissim', HistDissimSubprocessor.Cli, 60) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Sorting", len (self.img_list) ) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def process_info_generator(self): |
|
cpu_count = min(multiprocessing.cpu_count(), 8) |
|
io.log_info(f'Running on {cpu_count} CPUs') |
|
for i in range(cpu_count): |
|
yield 'CPU%d' % (i), {}, {'img_list' : self.img_list} |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.img_list_range) > 0: |
|
return [self.img_list_range.pop(0)] |
|
|
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.img_list_range.insert(0, data[0]) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
self.img_list[data[0]][2] = result |
|
io.progress_bar_inc(1) |
|
|
|
|
|
def get_result(self): |
|
return self.img_list |
|
|
|
def sort_by_hist_dissim(input_path): |
|
io.log_info ("Sorting by histogram dissimilarity...") |
|
|
|
img_list = [] |
|
trash_img_list = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
image = cv2_imread(str(filepath)) |
|
|
|
if dflimg is not None and dflimg.has_data(): |
|
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks()) |
|
image = (image*face_mask).astype(np.uint8) |
|
|
|
img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ]) |
|
|
|
img_list = HistDissimSubprocessor(img_list).run() |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True) |
|
|
|
return img_list, trash_img_list |
|
|
|
def sort_by_brightness(input_path): |
|
io.log_info ("Sorting by brightness...") |
|
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,2].flatten() )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ] |
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
return img_list, [] |
|
|
|
def sort_by_hue(input_path): |
|
io.log_info ("Sorting by hue...") |
|
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten() )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ] |
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
return img_list, [] |
|
|
|
def sort_by_black(input_path): |
|
io.log_info ("Sorting by amount of black pixels...") |
|
|
|
img_list = [] |
|
for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
img = cv2_imread(x) |
|
img_list.append ([x, img[(img == 0)].size ]) |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=False) |
|
|
|
return img_list, [] |
|
|
|
def sort_by_origname(input_path): |
|
io.log_info ("Sort by original filename...") |
|
|
|
img_list = [] |
|
trash_img_list = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
trash_img_list.append( [str(filepath)] ) |
|
continue |
|
|
|
img_list.append( [str(filepath), dflimg.get_source_filename()] ) |
|
|
|
io.log_info ("Sorting...") |
|
img_list = sorted(img_list, key=operator.itemgetter(1)) |
|
return img_list, trash_img_list |
|
|
|
def sort_by_oneface_in_image(input_path): |
|
io.log_info ("Sort by one face in images...") |
|
image_paths = pathex.get_image_paths(input_path) |
|
a = np.array ([ ( int(x[0]), int(x[1]) ) \ |
|
for x in [ Path(filepath).stem.split('_') for filepath in image_paths ] if len(x) == 2 |
|
]) |
|
if len(a) > 0: |
|
idxs = np.ndarray.flatten ( np.argwhere ( a[:,1] != 0 ) ) |
|
idxs = np.unique ( a[idxs][:,0] ) |
|
idxs = np.ndarray.flatten ( np.argwhere ( np.array([ x[0] in idxs for x in a ]) == True ) ) |
|
if len(idxs) > 0: |
|
io.log_info ("Found %d images." % (len(idxs)) ) |
|
img_list = [ (path,) for i,path in enumerate(image_paths) if i not in idxs ] |
|
trash_img_list = [ (image_paths[x],) for x in idxs ] |
|
return img_list, trash_img_list |
|
|
|
io.log_info ("Nothing found. Possible recover original filenames first.") |
|
return [], [] |
|
|
|
class FinalLoaderSubprocessor(Subprocessor): |
|
class Cli(Subprocessor.Cli): |
|
|
|
def on_initialize(self, client_dict): |
|
self.faster = client_dict['faster'] |
|
|
|
|
|
def process_data(self, data): |
|
filepath = Path(data[0]) |
|
|
|
try: |
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
self.log_err (f"{filepath.name} is not a dfl image file") |
|
return [ 1, [str(filepath)] ] |
|
|
|
bgr = cv2_imread(str(filepath)) |
|
if bgr is None: |
|
raise Exception ("Unable to load %s" % (filepath.name) ) |
|
|
|
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY) |
|
if self.faster: |
|
source_rect = dflimg.get_source_rect() |
|
sharpness = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32)) |
|
else: |
|
face_mask = LandmarksProcessor.get_image_hull_mask (gray.shape, dflimg.get_landmarks()) |
|
sharpness = estimate_sharpness( (gray[...,None]*face_mask).astype(np.uint8) ) |
|
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] ) |
|
|
|
hist = cv2.calcHist([gray], [0], None, [256], [0, 256]) |
|
except Exception as e: |
|
self.log_err (e) |
|
return [ 1, [str(filepath)] ] |
|
|
|
return [ 0, [str(filepath), sharpness, hist, yaw, pitch ] ] |
|
|
|
|
|
def get_data_name (self, data): |
|
|
|
return data[0] |
|
|
|
|
|
def __init__(self, img_list, faster ): |
|
self.img_list = img_list |
|
|
|
self.faster = faster |
|
self.result = [] |
|
self.result_trash = [] |
|
|
|
super().__init__('FinalLoader', FinalLoaderSubprocessor.Cli, 60) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Loading", len (self.img_list)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def process_info_generator(self): |
|
cpu_count = min(multiprocessing.cpu_count(), 8) |
|
io.log_info(f'Running on {cpu_count} CPUs') |
|
|
|
for i in range(cpu_count): |
|
yield 'CPU%d' % (i), {}, {'faster': self.faster} |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.img_list) > 0: |
|
return [self.img_list.pop(0)] |
|
|
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.img_list.insert(0, data[0]) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
if result[0] == 0: |
|
self.result.append (result[1]) |
|
else: |
|
self.result_trash.append (result[1]) |
|
io.progress_bar_inc(1) |
|
|
|
|
|
def get_result(self): |
|
return self.result, self.result_trash |
|
|
|
class FinalHistDissimSubprocessor(Subprocessor): |
|
class Cli(Subprocessor.Cli): |
|
|
|
def process_data(self, data): |
|
idx, pitch_yaw_img_list = data |
|
|
|
for p in range ( len(pitch_yaw_img_list) ): |
|
|
|
img_list = pitch_yaw_img_list[p] |
|
if img_list is not None: |
|
for i in range( len(img_list) ): |
|
score_total = 0 |
|
for j in range( len(img_list) ): |
|
if i == j: |
|
continue |
|
score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) |
|
img_list[i][3] = score_total |
|
|
|
pitch_yaw_img_list[p] = sorted(img_list, key=operator.itemgetter(3), reverse=True) |
|
|
|
return idx, pitch_yaw_img_list |
|
|
|
|
|
def get_data_name (self, data): |
|
return "Bunch of images" |
|
|
|
|
|
def __init__(self, pitch_yaw_sample_list ): |
|
self.pitch_yaw_sample_list = pitch_yaw_sample_list |
|
self.pitch_yaw_sample_list_len = len(pitch_yaw_sample_list) |
|
|
|
self.pitch_yaw_sample_list_idxs = [ i for i in range(self.pitch_yaw_sample_list_len) if self.pitch_yaw_sample_list[i] is not None ] |
|
self.result = [ None for _ in range(self.pitch_yaw_sample_list_len) ] |
|
super().__init__('FinalHistDissimSubprocessor', FinalHistDissimSubprocessor.Cli) |
|
|
|
|
|
def process_info_generator(self): |
|
cpu_count = min(multiprocessing.cpu_count(), 8) |
|
io.log_info(f'Running on {cpu_count} CPUs') |
|
for i in range(cpu_count): |
|
yield 'CPU%d' % (i), {}, {} |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Sort by hist-dissim", len(self.pitch_yaw_sample_list_idxs) ) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.pitch_yaw_sample_list_idxs) > 0: |
|
idx = self.pitch_yaw_sample_list_idxs.pop(0) |
|
|
|
return idx, self.pitch_yaw_sample_list[idx] |
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.pitch_yaw_sample_list_idxs.insert(0, data[0]) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
idx, yaws_sample_list = data |
|
self.result[idx] = yaws_sample_list |
|
io.progress_bar_inc(1) |
|
|
|
|
|
def get_result(self): |
|
return self.result |
|
|
|
def sort_best_faster(input_path): |
|
return sort_best(input_path, faster=True) |
|
|
|
def sort_best(input_path, faster=False): |
|
target_count = io.input_int ("Target number of faces?", 2000) |
|
|
|
io.log_info ("Performing sort by best faces.") |
|
if faster: |
|
io.log_info("Using faster algorithm. Faces will be sorted by source-rect-area instead of blur.") |
|
|
|
img_list, trash_img_list = FinalLoaderSubprocessor( pathex.get_image_paths(input_path), faster ).run() |
|
final_img_list = [] |
|
|
|
grads = 128 |
|
imgs_per_grad = round (target_count / grads) |
|
|
|
|
|
grads_space = np.linspace (-1.2, 1.2,grads) |
|
|
|
yaws_sample_list = [None]*grads |
|
for g in io.progress_bar_generator ( range(grads), "Sort by yaw"): |
|
yaw = grads_space[g] |
|
next_yaw = grads_space[g+1] if g < grads-1 else yaw |
|
|
|
yaw_samples = [] |
|
for img in img_list: |
|
s_yaw = -img[3] |
|
if (g == 0 and s_yaw < next_yaw) or \ |
|
(g < grads-1 and s_yaw >= yaw and s_yaw < next_yaw) or \ |
|
(g == grads-1 and s_yaw >= yaw): |
|
yaw_samples += [ img ] |
|
if len(yaw_samples) > 0: |
|
yaws_sample_list[g] = yaw_samples |
|
|
|
total_lack = 0 |
|
for g in io.progress_bar_generator ( range(grads), ""): |
|
img_list = yaws_sample_list[g] |
|
img_list_len = len(img_list) if img_list is not None else 0 |
|
|
|
lack = imgs_per_grad - img_list_len |
|
total_lack += max(lack, 0) |
|
|
|
imgs_per_grad += total_lack // grads |
|
|
|
|
|
sharpned_imgs_per_grad = imgs_per_grad*10 |
|
for g in io.progress_bar_generator ( range (grads), "Sort by blur"): |
|
img_list = yaws_sample_list[g] |
|
if img_list is None: |
|
continue |
|
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True) |
|
|
|
if len(img_list) > sharpned_imgs_per_grad: |
|
trash_img_list += img_list[sharpned_imgs_per_grad:] |
|
img_list = img_list[0:sharpned_imgs_per_grad] |
|
|
|
yaws_sample_list[g] = img_list |
|
|
|
|
|
yaw_pitch_sample_list = [None]*grads |
|
pitch_grads = imgs_per_grad |
|
|
|
for g in io.progress_bar_generator ( range (grads), "Sort by pitch"): |
|
img_list = yaws_sample_list[g] |
|
if img_list is None: |
|
continue |
|
|
|
pitch_sample_list = [None]*pitch_grads |
|
|
|
grads_space = np.linspace (-math.pi / 2,math.pi / 2, pitch_grads ) |
|
|
|
for pg in range (pitch_grads): |
|
|
|
pitch = grads_space[pg] |
|
next_pitch = grads_space[pg+1] if pg < pitch_grads-1 else pitch |
|
|
|
pitch_samples = [] |
|
for img in img_list: |
|
s_pitch = img[4] |
|
if (pg == 0 and s_pitch < next_pitch) or \ |
|
(pg < pitch_grads-1 and s_pitch >= pitch and s_pitch < next_pitch) or \ |
|
(pg == pitch_grads-1 and s_pitch >= pitch): |
|
pitch_samples += [ img ] |
|
|
|
if len(pitch_samples) > 0: |
|
pitch_sample_list[pg] = pitch_samples |
|
yaw_pitch_sample_list[g] = pitch_sample_list |
|
|
|
yaw_pitch_sample_list = FinalHistDissimSubprocessor(yaw_pitch_sample_list).run() |
|
|
|
for g in io.progress_bar_generator (range (grads), "Fetching the best"): |
|
pitch_sample_list = yaw_pitch_sample_list[g] |
|
if pitch_sample_list is None: |
|
continue |
|
|
|
n = imgs_per_grad |
|
|
|
while n > 0: |
|
n_prev = n |
|
for pg in range(pitch_grads): |
|
img_list = pitch_sample_list[pg] |
|
if img_list is None: |
|
continue |
|
final_img_list += [ img_list.pop(0) ] |
|
if len(img_list) == 0: |
|
pitch_sample_list[pg] = None |
|
n -= 1 |
|
if n == 0: |
|
break |
|
if n_prev == n: |
|
break |
|
|
|
for pg in range(pitch_grads): |
|
img_list = pitch_sample_list[pg] |
|
if img_list is None: |
|
continue |
|
trash_img_list += img_list |
|
|
|
return final_img_list, trash_img_list |
|
|
|
""" |
|
def sort_by_vggface(input_path): |
|
io.log_info ("Sorting by face similarity using VGGFace model...") |
|
|
|
model = VGGFace() |
|
|
|
final_img_list = [] |
|
trash_img_list = [] |
|
|
|
image_paths = pathex.get_image_paths(input_path) |
|
img_list = [ (x,) for x in image_paths ] |
|
img_list_len = len(img_list) |
|
img_list_range = [*range(img_list_len)] |
|
|
|
feats = [None]*img_list_len |
|
for i in io.progress_bar_generator(img_list_range, "Loading"): |
|
img = cv2_imread( img_list[i][0] ).astype(np.float32) |
|
img = imagelib.normalize_channels (img, 3) |
|
img = cv2.resize (img, (224,224) ) |
|
img = img[..., ::-1] |
|
img[..., 0] -= 93.5940 |
|
img[..., 1] -= 104.7624 |
|
img[..., 2] -= 129.1863 |
|
feats[i] = model.predict( img[None,...] )[0] |
|
|
|
tmp = np.zeros( (img_list_len,) ) |
|
float_inf = float("inf") |
|
for i in io.progress_bar_generator ( range(img_list_len-1), "Sorting" ): |
|
i_feat = feats[i] |
|
|
|
for j in img_list_range: |
|
tmp[j] = npla.norm(i_feat-feats[j]) if j >= i+1 else float_inf |
|
|
|
idx = np.argmin(tmp) |
|
|
|
img_list[i+1], img_list[idx] = img_list[idx], img_list[i+1] |
|
feats[i+1], feats[idx] = feats[idx], feats[i+1] |
|
|
|
return img_list, trash_img_list |
|
""" |
|
|
|
def sort_by_absdiff(input_path): |
|
io.log_info ("Sorting by absolute difference...") |
|
|
|
is_sim = io.input_bool ("Sort by similar?", True, help_message="Otherwise sort by dissimilar.") |
|
|
|
from core.leras import nn |
|
|
|
device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True) |
|
nn.initialize( device_config=device_config, data_format="NHWC" ) |
|
tf = nn.tf |
|
|
|
image_paths = pathex.get_image_paths(input_path) |
|
image_paths_len = len(image_paths) |
|
|
|
batch_size = 512 |
|
batch_size_remain = image_paths_len % batch_size |
|
|
|
i_t = tf.placeholder (tf.float32, (None,None,None,None) ) |
|
j_t = tf.placeholder (tf.float32, (None,None,None,None) ) |
|
|
|
outputs_full = [] |
|
outputs_remain = [] |
|
|
|
for i in range(batch_size): |
|
diff_t = tf.reduce_sum( tf.abs(i_t-j_t[i]), axis=[1,2,3] ) |
|
outputs_full.append(diff_t) |
|
if i < batch_size_remain: |
|
outputs_remain.append(diff_t) |
|
|
|
def func_bs_full(i,j): |
|
return nn.tf_sess.run (outputs_full, feed_dict={i_t:i,j_t:j}) |
|
|
|
def func_bs_remain(i,j): |
|
return nn.tf_sess.run (outputs_remain, feed_dict={i_t:i,j_t:j}) |
|
|
|
import h5py |
|
db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5' |
|
db_file = h5py.File( str(db_file_path), "w") |
|
db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip") |
|
|
|
pg_len = image_paths_len // batch_size |
|
if batch_size_remain != 0: |
|
pg_len += 1 |
|
|
|
pg_len = int( ( pg_len*pg_len - pg_len ) / 2 + pg_len ) |
|
|
|
io.progress_bar ("Computing", pg_len) |
|
j=0 |
|
while j < image_paths_len: |
|
j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ] |
|
j_images_len = len(j_images) |
|
|
|
func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full |
|
|
|
i=0 |
|
while i < image_paths_len: |
|
if i >= j: |
|
i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ] |
|
i_images_len = len(i_images) |
|
result = func (i_images,j_images) |
|
db[j:j+j_images_len,i:i+i_images_len] = np.array(result) |
|
io.progress_bar_inc(1) |
|
|
|
i += batch_size |
|
db_file.flush() |
|
j += batch_size |
|
|
|
io.progress_bar_close() |
|
|
|
next_id = 0 |
|
sorted = [next_id] |
|
for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ): |
|
id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] ) |
|
id_ar = np.argsort(id_ar) |
|
|
|
|
|
next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1] |
|
sorted += [next_id] |
|
db_file.close() |
|
db_file_path.unlink() |
|
|
|
img_list = [ (image_paths[x],) for x in sorted] |
|
return img_list, [] |
|
|
|
def final_process(input_path, img_list, trash_img_list): |
|
if len(trash_img_list) != 0: |
|
parent_input_path = input_path.parent |
|
trash_path = parent_input_path / (input_path.stem + '_trash') |
|
trash_path.mkdir (exist_ok=True) |
|
|
|
io.log_info ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) ) |
|
|
|
for filename in pathex.get_image_paths(trash_path): |
|
Path(filename).unlink() |
|
|
|
for i in io.progress_bar_generator( range(len(trash_img_list)), "Moving trash", leave=False): |
|
src = Path (trash_img_list[i][0]) |
|
dst = trash_path / src.name |
|
try: |
|
src.rename (dst) |
|
except: |
|
io.log_info ('fail to trashing %s' % (src.name) ) |
|
|
|
io.log_info ("") |
|
|
|
if len(img_list) != 0: |
|
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming", leave=False): |
|
src = Path (img_list[i][0]) |
|
dst = input_path / ('%.5d_%s' % (i, src.name )) |
|
try: |
|
src.rename (dst) |
|
except: |
|
io.log_info ('fail to rename %s' % (src.name) ) |
|
|
|
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming"): |
|
src = Path (img_list[i][0]) |
|
src = input_path / ('%.5d_%s' % (i, src.name)) |
|
dst = input_path / ('%.5d%s' % (i, src.suffix)) |
|
try: |
|
src.rename (dst) |
|
except: |
|
io.log_info ('fail to rename %s' % (src.name) ) |
|
|
|
sort_func_methods = { |
|
'blur': ("blur", sort_by_blur), |
|
'motion-blur': ("motion_blur", sort_by_motion_blur), |
|
'face-yaw': ("face yaw direction", sort_by_face_yaw), |
|
'face-pitch': ("face pitch direction", sort_by_face_pitch), |
|
'face-source-rect-size' : ("face rect size in source image", sort_by_face_source_rect_size), |
|
'hist': ("histogram similarity", sort_by_hist), |
|
'hist-dissim': ("histogram dissimilarity", sort_by_hist_dissim), |
|
'brightness': ("brightness", sort_by_brightness), |
|
'hue': ("hue", sort_by_hue), |
|
'black': ("amount of black pixels", sort_by_black), |
|
'origname': ("original filename", sort_by_origname), |
|
'oneface': ("one face in image", sort_by_oneface_in_image), |
|
'absdiff': ("absolute pixel difference", sort_by_absdiff), |
|
'final': ("best faces", sort_best), |
|
'final-fast': ("best faces faster", sort_best_faster), |
|
} |
|
|
|
def main (input_path, sort_by_method=None): |
|
io.log_info ("Running sort tool.\r\n") |
|
|
|
if sort_by_method is None: |
|
io.log_info(f"Choose sorting method:") |
|
|
|
key_list = list(sort_func_methods.keys()) |
|
for i, key in enumerate(key_list): |
|
desc, func = sort_func_methods[key] |
|
io.log_info(f"[{i}] {desc}") |
|
|
|
io.log_info("") |
|
id = io.input_int("", 5, valid_list=[*range(len(key_list))] ) |
|
|
|
sort_by_method = key_list[id] |
|
else: |
|
sort_by_method = sort_by_method.lower() |
|
|
|
desc, func = sort_func_methods[sort_by_method] |
|
img_list, trash_img_list = func(input_path) |
|
|
|
final_process (input_path, img_list, trash_img_list) |
|
|