File size: 32,187 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
import math
import multiprocessing
import operator
import os
import sys
import tempfile
from functools import cmp_to_key
from pathlib import Path
import cv2
import numpy as np
from numpy import linalg as npla
from core import imagelib, mathlib, pathex
from core.cv2ex import *
from core.imagelib import estimate_sharpness
from core.interact import interact as io
from core.joblib import Subprocessor
from core.leras import nn
from DFLIMG import *
from facelib import LandmarksProcessor
class BlurEstimatorSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
def on_initialize(self, client_dict):
self.estimate_motion_blur = client_dict['estimate_motion_blur']
#override
def process_data(self, data):
filepath = Path( data[0] )
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
self.log_err (f"{filepath.name} is not a dfl image file")
return [ str(filepath), 0 ]
else:
image = cv2_imread( str(filepath) )
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)
if self.estimate_motion_blur:
value = cv2.Laplacian(image, cv2.CV_64F, ksize=11).var()
else:
value = estimate_sharpness(image)
return [ str(filepath), value ]
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_data, estimate_motion_blur=False ):
self.input_data = input_data
self.estimate_motion_blur = estimate_motion_blur
self.img_list = []
self.trash_img_list = []
super().__init__('BlurEstimator', BlurEstimatorSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("", len (self.input_data))
#override
def on_clients_finalized(self):
io.progress_bar_close ()
#override
def process_info_generator(self):
cpu_count = multiprocessing.cpu_count()
io.log_info(f'Running on {cpu_count} CPUs')
for i in range(cpu_count):
yield 'CPU%d' % (i), {}, {'estimate_motion_blur':self.estimate_motion_blur}
#override
def get_data(self, host_dict):
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
self.input_data.insert(0, data)
#override
def on_result (self, host_dict, data, result):
if result[1] == 0:
self.trash_img_list.append ( result )
else:
self.img_list.append ( result )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.img_list, self.trash_img_list
def sort_by_blur(input_path):
io.log_info ("Sorting by blur...")
img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ]
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list).run()
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_motion_blur(input_path):
io.log_info ("Sorting by motion blur...")
img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ]
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list, estimate_motion_blur=True).run()
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_face_yaw(input_path):
io.log_info ("Sorting by face yaw...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
trash_img_list.append ( [str(filepath)] )
continue
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), yaw ] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_face_pitch(input_path):
io.log_info ("Sorting by face pitch...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
trash_img_list.append ( [str(filepath)] )
continue
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), pitch ] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_face_source_rect_size(input_path):
io.log_info ("Sorting by face rect size...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
trash_img_list.append ( [str(filepath)] )
continue
source_rect = dflimg.get_source_rect()
rect_area = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32))
img_list.append( [str(filepath), rect_area ] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
class HistSsimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def process_data(self, data):
img_list = []
for x in data:
img = cv2_imread(x)
img_list.append ([x, cv2.calcHist([img], [0], None, [256], [0, 256]),
cv2.calcHist([img], [1], None, [256], [0, 256]),
cv2.calcHist([img], [2], None, [256], [0, 256])
])
img_list_len = len(img_list)
for i in range(img_list_len-1):
min_score = float("inf")
j_min_score = i+1
for j in range(i+1,len(img_list)):
score = cv2.compareHist(img_list[i][1], img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) + \
cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) + \
cv2.compareHist(img_list[i][3], img_list[j][3], cv2.HISTCMP_BHATTACHARYYA)
if score < min_score:
min_score = score
j_min_score = j
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]
self.progress_bar_inc(1)
return img_list
#override
def get_data_name (self, data):
return "Bunch of images"
#override
def __init__(self, img_list ):
self.img_list = img_list
self.img_list_len = len(img_list)
slice_count = 20000
sliced_count = self.img_list_len // slice_count
if sliced_count > 12:
sliced_count = 11.9
slice_count = int(self.img_list_len / sliced_count)
sliced_count = self.img_list_len // slice_count
self.img_chunks_list = [ self.img_list[i*slice_count : (i+1)*slice_count] for i in range(sliced_count) ] + \
[ self.img_list[sliced_count*slice_count:] ]
self.result = []
super().__init__('HistSsim', HistSsimSubprocessor.Cli, 0)
#override
def process_info_generator(self):
cpu_count = len(self.img_chunks_list)
io.log_info(f'Running on {cpu_count} threads')
for i in range(cpu_count):
yield 'CPU%d' % (i), {'i':i}, {}
#override
def on_clients_initialized(self):
io.progress_bar ("Sorting", len(self.img_list))
io.progress_bar_inc(len(self.img_chunks_list))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.img_chunks_list) > 0:
return self.img_chunks_list.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
raise Exception("Fail to process data. Decrease number of images and try again.")
#override
def on_result (self, host_dict, data, result):
self.result += result
return 0
#override
def get_result(self):
return self.result
def sort_by_hist(input_path):
io.log_info ("Sorting by histogram similarity...")
img_list = HistSsimSubprocessor(pathex.get_image_paths(input_path)).run()
return img_list, []
class HistDissimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.img_list = client_dict['img_list']
self.img_list_len = len(self.img_list)
#override
def process_data(self, data):
i = data[0]
score_total = 0
for j in range( 0, self.img_list_len):
if i == j:
continue
score_total += cv2.compareHist(self.img_list[i][1], self.img_list[j][1], cv2.HISTCMP_BHATTACHARYYA)
return score_total
#override
def get_data_name (self, data):
#return string identificator of your data
return self.img_list[data[0]][0]
#override
def __init__(self, img_list ):
self.img_list = img_list
self.img_list_range = [i for i in range(0, len(img_list) )]
self.result = []
super().__init__('HistDissim', HistDissimSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("Sorting", len (self.img_list) )
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
cpu_count = min(multiprocessing.cpu_count(), 8)
io.log_info(f'Running on {cpu_count} CPUs')
for i in range(cpu_count):
yield 'CPU%d' % (i), {}, {'img_list' : self.img_list}
#override
def get_data(self, host_dict):
if len (self.img_list_range) > 0:
return [self.img_list_range.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.img_list_range.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
self.img_list[data[0]][2] = result
io.progress_bar_inc(1)
#override
def get_result(self):
return self.img_list
def sort_by_hist_dissim(input_path):
io.log_info ("Sorting by histogram dissimilarity...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
image = cv2_imread(str(filepath))
if dflimg is not None and dflimg.has_data():
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)
img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])
img_list = HistDissimSubprocessor(img_list).run()
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list, trash_img_list
def sort_by_brightness(input_path):
io.log_info ("Sorting by brightness...")
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,2].flatten() )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ]
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, []
def sort_by_hue(input_path):
io.log_info ("Sorting by hue...")
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten() )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ]
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, []
def sort_by_black(input_path):
io.log_info ("Sorting by amount of black pixels...")
img_list = []
for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
img = cv2_imread(x)
img_list.append ([x, img[(img == 0)].size ])
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=False)
return img_list, []
def sort_by_origname(input_path):
io.log_info ("Sort by original filename...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
trash_img_list.append( [str(filepath)] )
continue
img_list.append( [str(filepath), dflimg.get_source_filename()] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1))
return img_list, trash_img_list
def sort_by_oneface_in_image(input_path):
io.log_info ("Sort by one face in images...")
image_paths = pathex.get_image_paths(input_path)
a = np.array ([ ( int(x[0]), int(x[1]) ) \
for x in [ Path(filepath).stem.split('_') for filepath in image_paths ] if len(x) == 2
])
if len(a) > 0:
idxs = np.ndarray.flatten ( np.argwhere ( a[:,1] != 0 ) )
idxs = np.unique ( a[idxs][:,0] )
idxs = np.ndarray.flatten ( np.argwhere ( np.array([ x[0] in idxs for x in a ]) == True ) )
if len(idxs) > 0:
io.log_info ("Found %d images." % (len(idxs)) )
img_list = [ (path,) for i,path in enumerate(image_paths) if i not in idxs ]
trash_img_list = [ (image_paths[x],) for x in idxs ]
return img_list, trash_img_list
io.log_info ("Nothing found. Possible recover original filenames first.")
return [], []
class FinalLoaderSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.faster = client_dict['faster']
#override
def process_data(self, data):
filepath = Path(data[0])
try:
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
self.log_err (f"{filepath.name} is not a dfl image file")
return [ 1, [str(filepath)] ]
bgr = cv2_imread(str(filepath))
if bgr is None:
raise Exception ("Unable to load %s" % (filepath.name) )
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
if self.faster:
source_rect = dflimg.get_source_rect()
sharpness = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32))
else:
face_mask = LandmarksProcessor.get_image_hull_mask (gray.shape, dflimg.get_landmarks())
sharpness = estimate_sharpness( (gray[...,None]*face_mask).astype(np.uint8) )
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
except Exception as e:
self.log_err (e)
return [ 1, [str(filepath)] ]
return [ 0, [str(filepath), sharpness, hist, yaw, pitch ] ]
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, img_list, faster ):
self.img_list = img_list
self.faster = faster
self.result = []
self.result_trash = []
super().__init__('FinalLoader', FinalLoaderSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("Loading", len (self.img_list))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
cpu_count = min(multiprocessing.cpu_count(), 8)
io.log_info(f'Running on {cpu_count} CPUs')
for i in range(cpu_count):
yield 'CPU%d' % (i), {}, {'faster': self.faster}
#override
def get_data(self, host_dict):
if len (self.img_list) > 0:
return [self.img_list.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.img_list.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
if result[0] == 0:
self.result.append (result[1])
else:
self.result_trash.append (result[1])
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result, self.result_trash
class FinalHistDissimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def process_data(self, data):
idx, pitch_yaw_img_list = data
for p in range ( len(pitch_yaw_img_list) ):
img_list = pitch_yaw_img_list[p]
if img_list is not None:
for i in range( len(img_list) ):
score_total = 0
for j in range( len(img_list) ):
if i == j:
continue
score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA)
img_list[i][3] = score_total
pitch_yaw_img_list[p] = sorted(img_list, key=operator.itemgetter(3), reverse=True)
return idx, pitch_yaw_img_list
#override
def get_data_name (self, data):
return "Bunch of images"
#override
def __init__(self, pitch_yaw_sample_list ):
self.pitch_yaw_sample_list = pitch_yaw_sample_list
self.pitch_yaw_sample_list_len = len(pitch_yaw_sample_list)
self.pitch_yaw_sample_list_idxs = [ i for i in range(self.pitch_yaw_sample_list_len) if self.pitch_yaw_sample_list[i] is not None ]
self.result = [ None for _ in range(self.pitch_yaw_sample_list_len) ]
super().__init__('FinalHistDissimSubprocessor', FinalHistDissimSubprocessor.Cli)
#override
def process_info_generator(self):
cpu_count = min(multiprocessing.cpu_count(), 8)
io.log_info(f'Running on {cpu_count} CPUs')
for i in range(cpu_count):
yield 'CPU%d' % (i), {}, {}
#override
def on_clients_initialized(self):
io.progress_bar ("Sort by hist-dissim", len(self.pitch_yaw_sample_list_idxs) )
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.pitch_yaw_sample_list_idxs) > 0:
idx = self.pitch_yaw_sample_list_idxs.pop(0)
return idx, self.pitch_yaw_sample_list[idx]
return None
#override
def on_data_return (self, host_dict, data):
self.pitch_yaw_sample_list_idxs.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
idx, yaws_sample_list = data
self.result[idx] = yaws_sample_list
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
def sort_best_faster(input_path):
return sort_best(input_path, faster=True)
def sort_best(input_path, faster=False):
target_count = io.input_int ("Target number of faces?", 2000)
io.log_info ("Performing sort by best faces.")
if faster:
io.log_info("Using faster algorithm. Faces will be sorted by source-rect-area instead of blur.")
img_list, trash_img_list = FinalLoaderSubprocessor( pathex.get_image_paths(input_path), faster ).run()
final_img_list = []
grads = 128
imgs_per_grad = round (target_count / grads)
#instead of math.pi / 2, using -1.2,+1.2 because actually maximum yaw for 2DFAN landmarks are -1.2+1.2
grads_space = np.linspace (-1.2, 1.2,grads)
yaws_sample_list = [None]*grads
for g in io.progress_bar_generator ( range(grads), "Sort by yaw"):
yaw = grads_space[g]
next_yaw = grads_space[g+1] if g < grads-1 else yaw
yaw_samples = []
for img in img_list:
s_yaw = -img[3]
if (g == 0 and s_yaw < next_yaw) or \
(g < grads-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
(g == grads-1 and s_yaw >= yaw):
yaw_samples += [ img ]
if len(yaw_samples) > 0:
yaws_sample_list[g] = yaw_samples
total_lack = 0
for g in io.progress_bar_generator ( range(grads), ""):
img_list = yaws_sample_list[g]
img_list_len = len(img_list) if img_list is not None else 0
lack = imgs_per_grad - img_list_len
total_lack += max(lack, 0)
imgs_per_grad += total_lack // grads
sharpned_imgs_per_grad = imgs_per_grad*10
for g in io.progress_bar_generator ( range (grads), "Sort by blur"):
img_list = yaws_sample_list[g]
if img_list is None:
continue
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
if len(img_list) > sharpned_imgs_per_grad:
trash_img_list += img_list[sharpned_imgs_per_grad:]
img_list = img_list[0:sharpned_imgs_per_grad]
yaws_sample_list[g] = img_list
yaw_pitch_sample_list = [None]*grads
pitch_grads = imgs_per_grad
for g in io.progress_bar_generator ( range (grads), "Sort by pitch"):
img_list = yaws_sample_list[g]
if img_list is None:
continue
pitch_sample_list = [None]*pitch_grads
grads_space = np.linspace (-math.pi / 2,math.pi / 2, pitch_grads )
for pg in range (pitch_grads):
pitch = grads_space[pg]
next_pitch = grads_space[pg+1] if pg < pitch_grads-1 else pitch
pitch_samples = []
for img in img_list:
s_pitch = img[4]
if (pg == 0 and s_pitch < next_pitch) or \
(pg < pitch_grads-1 and s_pitch >= pitch and s_pitch < next_pitch) or \
(pg == pitch_grads-1 and s_pitch >= pitch):
pitch_samples += [ img ]
if len(pitch_samples) > 0:
pitch_sample_list[pg] = pitch_samples
yaw_pitch_sample_list[g] = pitch_sample_list
yaw_pitch_sample_list = FinalHistDissimSubprocessor(yaw_pitch_sample_list).run()
for g in io.progress_bar_generator (range (grads), "Fetching the best"):
pitch_sample_list = yaw_pitch_sample_list[g]
if pitch_sample_list is None:
continue
n = imgs_per_grad
while n > 0:
n_prev = n
for pg in range(pitch_grads):
img_list = pitch_sample_list[pg]
if img_list is None:
continue
final_img_list += [ img_list.pop(0) ]
if len(img_list) == 0:
pitch_sample_list[pg] = None
n -= 1
if n == 0:
break
if n_prev == n:
break
for pg in range(pitch_grads):
img_list = pitch_sample_list[pg]
if img_list is None:
continue
trash_img_list += img_list
return final_img_list, trash_img_list
"""
def sort_by_vggface(input_path):
io.log_info ("Sorting by face similarity using VGGFace model...")
model = VGGFace()
final_img_list = []
trash_img_list = []
image_paths = pathex.get_image_paths(input_path)
img_list = [ (x,) for x in image_paths ]
img_list_len = len(img_list)
img_list_range = [*range(img_list_len)]
feats = [None]*img_list_len
for i in io.progress_bar_generator(img_list_range, "Loading"):
img = cv2_imread( img_list[i][0] ).astype(np.float32)
img = imagelib.normalize_channels (img, 3)
img = cv2.resize (img, (224,224) )
img = img[..., ::-1]
img[..., 0] -= 93.5940
img[..., 1] -= 104.7624
img[..., 2] -= 129.1863
feats[i] = model.predict( img[None,...] )[0]
tmp = np.zeros( (img_list_len,) )
float_inf = float("inf")
for i in io.progress_bar_generator ( range(img_list_len-1), "Sorting" ):
i_feat = feats[i]
for j in img_list_range:
tmp[j] = npla.norm(i_feat-feats[j]) if j >= i+1 else float_inf
idx = np.argmin(tmp)
img_list[i+1], img_list[idx] = img_list[idx], img_list[i+1]
feats[i+1], feats[idx] = feats[idx], feats[i+1]
return img_list, trash_img_list
"""
def sort_by_absdiff(input_path):
io.log_info ("Sorting by absolute difference...")
is_sim = io.input_bool ("Sort by similar?", True, help_message="Otherwise sort by dissimilar.")
from core.leras import nn
device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
nn.initialize( device_config=device_config, data_format="NHWC" )
tf = nn.tf
image_paths = pathex.get_image_paths(input_path)
image_paths_len = len(image_paths)
batch_size = 512
batch_size_remain = image_paths_len % batch_size
i_t = tf.placeholder (tf.float32, (None,None,None,None) )
j_t = tf.placeholder (tf.float32, (None,None,None,None) )
outputs_full = []
outputs_remain = []
for i in range(batch_size):
diff_t = tf.reduce_sum( tf.abs(i_t-j_t[i]), axis=[1,2,3] )
outputs_full.append(diff_t)
if i < batch_size_remain:
outputs_remain.append(diff_t)
def func_bs_full(i,j):
return nn.tf_sess.run (outputs_full, feed_dict={i_t:i,j_t:j})
def func_bs_remain(i,j):
return nn.tf_sess.run (outputs_remain, feed_dict={i_t:i,j_t:j})
import h5py
db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5'
db_file = h5py.File( str(db_file_path), "w")
db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip")
pg_len = image_paths_len // batch_size
if batch_size_remain != 0:
pg_len += 1
pg_len = int( ( pg_len*pg_len - pg_len ) / 2 + pg_len )
io.progress_bar ("Computing", pg_len)
j=0
while j < image_paths_len:
j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ]
j_images_len = len(j_images)
func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full
i=0
while i < image_paths_len:
if i >= j:
i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ]
i_images_len = len(i_images)
result = func (i_images,j_images)
db[j:j+j_images_len,i:i+i_images_len] = np.array(result)
io.progress_bar_inc(1)
i += batch_size
db_file.flush()
j += batch_size
io.progress_bar_close()
next_id = 0
sorted = [next_id]
for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ):
id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] )
id_ar = np.argsort(id_ar)
next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1]
sorted += [next_id]
db_file.close()
db_file_path.unlink()
img_list = [ (image_paths[x],) for x in sorted]
return img_list, []
def final_process(input_path, img_list, trash_img_list):
if len(trash_img_list) != 0:
parent_input_path = input_path.parent
trash_path = parent_input_path / (input_path.stem + '_trash')
trash_path.mkdir (exist_ok=True)
io.log_info ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) )
for filename in pathex.get_image_paths(trash_path):
Path(filename).unlink()
for i in io.progress_bar_generator( range(len(trash_img_list)), "Moving trash", leave=False):
src = Path (trash_img_list[i][0])
dst = trash_path / src.name
try:
src.rename (dst)
except:
io.log_info ('fail to trashing %s' % (src.name) )
io.log_info ("")
if len(img_list) != 0:
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming", leave=False):
src = Path (img_list[i][0])
dst = input_path / ('%.5d_%s' % (i, src.name ))
try:
src.rename (dst)
except:
io.log_info ('fail to rename %s' % (src.name) )
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming"):
src = Path (img_list[i][0])
src = input_path / ('%.5d_%s' % (i, src.name))
dst = input_path / ('%.5d%s' % (i, src.suffix))
try:
src.rename (dst)
except:
io.log_info ('fail to rename %s' % (src.name) )
sort_func_methods = {
'blur': ("blur", sort_by_blur),
'motion-blur': ("motion_blur", sort_by_motion_blur),
'face-yaw': ("face yaw direction", sort_by_face_yaw),
'face-pitch': ("face pitch direction", sort_by_face_pitch),
'face-source-rect-size' : ("face rect size in source image", sort_by_face_source_rect_size),
'hist': ("histogram similarity", sort_by_hist),
'hist-dissim': ("histogram dissimilarity", sort_by_hist_dissim),
'brightness': ("brightness", sort_by_brightness),
'hue': ("hue", sort_by_hue),
'black': ("amount of black pixels", sort_by_black),
'origname': ("original filename", sort_by_origname),
'oneface': ("one face in image", sort_by_oneface_in_image),
'absdiff': ("absolute pixel difference", sort_by_absdiff),
'final': ("best faces", sort_best),
'final-fast': ("best faces faster", sort_best_faster),
}
def main (input_path, sort_by_method=None):
io.log_info ("Running sort tool.\r\n")
if sort_by_method is None:
io.log_info(f"Choose sorting method:")
key_list = list(sort_func_methods.keys())
for i, key in enumerate(key_list):
desc, func = sort_func_methods[key]
io.log_info(f"[{i}] {desc}")
io.log_info("")
id = io.input_int("", 5, valid_list=[*range(len(key_list))] )
sort_by_method = key_list[id]
else:
sort_by_method = sort_by_method.lower()
desc, func = sort_func_methods[sort_by_method]
img_list, trash_img_list = func(input_path)
final_process (input_path, img_list, trash_img_list)
|