File size: 32,187 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
import math
import multiprocessing
import operator
import os
import sys
import tempfile
from functools import cmp_to_key
from pathlib import Path

import cv2
import numpy as np
from numpy import linalg as npla

from core import imagelib, mathlib, pathex
from core.cv2ex import *
from core.imagelib import estimate_sharpness
from core.interact import interact as io
from core.joblib import Subprocessor
from core.leras import nn
from DFLIMG import *
from facelib import LandmarksProcessor


class BlurEstimatorSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        def on_initialize(self, client_dict):
            self.estimate_motion_blur = client_dict['estimate_motion_blur']
        
        #override
        def process_data(self, data):
            filepath = Path( data[0] )
            dflimg = DFLIMG.load (filepath)

            if dflimg is None or not dflimg.has_data():
                self.log_err (f"{filepath.name} is not a dfl image file")
                return [ str(filepath), 0 ]
            else:
                image = cv2_imread( str(filepath) )
                
                face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
                image = (image*face_mask).astype(np.uint8)
                
                
                if self.estimate_motion_blur:
                    value = cv2.Laplacian(image, cv2.CV_64F, ksize=11).var()    
                else:
                    value = estimate_sharpness(image)
                
                return [ str(filepath), value ]


        #override
        def get_data_name (self, data):
            #return string identificator of your data
            return data[0]

    #override
    def __init__(self, input_data, estimate_motion_blur=False ):
        self.input_data = input_data
        self.estimate_motion_blur = estimate_motion_blur
        self.img_list = []
        self.trash_img_list = []
        super().__init__('BlurEstimator', BlurEstimatorSubprocessor.Cli, 60)

    #override
    def on_clients_initialized(self):
        io.progress_bar ("", len (self.input_data))

    #override
    def on_clients_finalized(self):
        io.progress_bar_close ()

    #override
    def process_info_generator(self):
        cpu_count = multiprocessing.cpu_count()
        io.log_info(f'Running on {cpu_count} CPUs')

        for i in range(cpu_count):
            yield 'CPU%d' % (i), {}, {'estimate_motion_blur':self.estimate_motion_blur}

    #override
    def get_data(self, host_dict):
        if len (self.input_data) > 0:
            return self.input_data.pop(0)

        return None

    #override
    def on_data_return (self, host_dict, data):
        self.input_data.insert(0, data)

    #override
    def on_result (self, host_dict, data, result):
        if result[1] == 0:
            self.trash_img_list.append ( result )
        else:
            self.img_list.append ( result )

        io.progress_bar_inc(1)

    #override
    def get_result(self):
        return self.img_list, self.trash_img_list


def sort_by_blur(input_path):
    io.log_info ("Sorting by blur...")

    img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ]
    img_list, trash_img_list = BlurEstimatorSubprocessor (img_list).run()

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

    return img_list, trash_img_list
    
def sort_by_motion_blur(input_path):
    io.log_info ("Sorting by motion blur...")

    img_list = [ (filename,[]) for filename in pathex.get_image_paths(input_path) ]
    img_list, trash_img_list = BlurEstimatorSubprocessor (img_list, estimate_motion_blur=True).run()

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

    return img_list, trash_img_list
    
def sort_by_face_yaw(input_path):
    io.log_info ("Sorting by face yaw...")
    img_list = []
    trash_img_list = []
    for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        filepath = Path(filepath)

        dflimg = DFLIMG.load (filepath)

        if dflimg is None or not dflimg.has_data():
            io.log_err (f"{filepath.name} is not a dfl image file")
            trash_img_list.append ( [str(filepath)] )
            continue

        pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )

        img_list.append( [str(filepath), yaw ] )

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

    return img_list, trash_img_list

def sort_by_face_pitch(input_path):
    io.log_info ("Sorting by face pitch...")
    img_list = []
    trash_img_list = []
    for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        filepath = Path(filepath)

        dflimg = DFLIMG.load (filepath)

        if dflimg is None or not dflimg.has_data():
            io.log_err (f"{filepath.name} is not a dfl image file")
            trash_img_list.append ( [str(filepath)] )
            continue

        pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )

        img_list.append( [str(filepath), pitch ] )

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

    return img_list, trash_img_list

def sort_by_face_source_rect_size(input_path):
    io.log_info ("Sorting by face rect size...")
    img_list = []
    trash_img_list = []
    for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        filepath = Path(filepath)

        dflimg = DFLIMG.load (filepath)

        if dflimg is None or not dflimg.has_data():
            io.log_err (f"{filepath.name} is not a dfl image file")
            trash_img_list.append ( [str(filepath)] )
            continue

        source_rect = dflimg.get_source_rect()
        rect_area = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32))

        img_list.append( [str(filepath), rect_area ] )

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

    return img_list, trash_img_list



class HistSsimSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        #override
        def process_data(self, data):
            img_list = []
            for x in data:
                img = cv2_imread(x)
                img_list.append ([x, cv2.calcHist([img], [0], None, [256], [0, 256]),
                                     cv2.calcHist([img], [1], None, [256], [0, 256]),
                                     cv2.calcHist([img], [2], None, [256], [0, 256])
                                 ])

            img_list_len = len(img_list)
            for i in range(img_list_len-1):
                min_score = float("inf")
                j_min_score = i+1
                for j in range(i+1,len(img_list)):
                    score = cv2.compareHist(img_list[i][1], img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) + \
                            cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) + \
                            cv2.compareHist(img_list[i][3], img_list[j][3], cv2.HISTCMP_BHATTACHARYYA)
                    if score < min_score:
                        min_score = score
                        j_min_score = j
                img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]

                self.progress_bar_inc(1)

            return img_list

        #override
        def get_data_name (self, data):
            return "Bunch of images"

    #override
    def __init__(self, img_list ):
        self.img_list = img_list
        self.img_list_len = len(img_list)

        slice_count = 20000
        sliced_count = self.img_list_len // slice_count

        if sliced_count > 12:
            sliced_count = 11.9
            slice_count = int(self.img_list_len / sliced_count)
            sliced_count = self.img_list_len // slice_count

        self.img_chunks_list = [ self.img_list[i*slice_count : (i+1)*slice_count] for i in range(sliced_count) ] + \
                               [ self.img_list[sliced_count*slice_count:] ]

        self.result = []
        super().__init__('HistSsim', HistSsimSubprocessor.Cli, 0)

    #override
    def process_info_generator(self):
        cpu_count = len(self.img_chunks_list)
        io.log_info(f'Running on {cpu_count} threads')
        for i in range(cpu_count):
            yield 'CPU%d' % (i), {'i':i}, {}

    #override
    def on_clients_initialized(self):
        io.progress_bar ("Sorting", len(self.img_list))
        io.progress_bar_inc(len(self.img_chunks_list))

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def get_data(self, host_dict):
        if len (self.img_chunks_list) > 0:
            return self.img_chunks_list.pop(0)
        return None

    #override
    def on_data_return (self, host_dict, data):
        raise Exception("Fail to process data. Decrease number of images and try again.")

    #override
    def on_result (self, host_dict, data, result):
        self.result += result
        return 0

    #override
    def get_result(self):
        return self.result

def sort_by_hist(input_path):
    io.log_info ("Sorting by histogram similarity...")
    img_list = HistSsimSubprocessor(pathex.get_image_paths(input_path)).run()
    return img_list, []

class HistDissimSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        #override
        def on_initialize(self, client_dict):
            self.img_list = client_dict['img_list']
            self.img_list_len = len(self.img_list)

        #override
        def process_data(self, data):
            i = data[0]
            score_total = 0
            for j in range( 0, self.img_list_len):
                if i == j:
                    continue
                score_total += cv2.compareHist(self.img_list[i][1], self.img_list[j][1], cv2.HISTCMP_BHATTACHARYYA)

            return score_total

        #override
        def get_data_name (self, data):
            #return string identificator of your data
            return self.img_list[data[0]][0]

    #override
    def __init__(self, img_list ):
        self.img_list = img_list
        self.img_list_range = [i for i in range(0, len(img_list) )]
        self.result = []
        super().__init__('HistDissim', HistDissimSubprocessor.Cli, 60)

    #override
    def on_clients_initialized(self):
        io.progress_bar ("Sorting", len (self.img_list) )

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def process_info_generator(self):
        cpu_count = min(multiprocessing.cpu_count(), 8)
        io.log_info(f'Running on {cpu_count} CPUs')
        for i in range(cpu_count):
            yield 'CPU%d' % (i), {}, {'img_list' : self.img_list}

    #override
    def get_data(self, host_dict):
        if len (self.img_list_range) > 0:
            return [self.img_list_range.pop(0)]

        return None

    #override
    def on_data_return (self, host_dict, data):
        self.img_list_range.insert(0, data[0])

    #override
    def on_result (self, host_dict, data, result):
        self.img_list[data[0]][2] = result
        io.progress_bar_inc(1)

    #override
    def get_result(self):
        return self.img_list

def sort_by_hist_dissim(input_path):
    io.log_info ("Sorting by histogram dissimilarity...")

    img_list = []
    trash_img_list = []
    for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        filepath = Path(filepath)

        dflimg = DFLIMG.load (filepath)

        image = cv2_imread(str(filepath))

        if dflimg is not None and dflimg.has_data():
            face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
            image = (image*face_mask).astype(np.uint8)

        img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])

    img_list = HistDissimSubprocessor(img_list).run()

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)

    return img_list, trash_img_list

def sort_by_brightness(input_path):
    io.log_info ("Sorting by brightness...")
    img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,2].flatten()  )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ]
    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
    return img_list, []

def sort_by_hue(input_path):
    io.log_info ("Sorting by hue...")
    img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten()  )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ]
    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
    return img_list, []

def sort_by_black(input_path):
    io.log_info ("Sorting by amount of black pixels...")

    img_list = []
    for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        img = cv2_imread(x)
        img_list.append ([x, img[(img == 0)].size ])

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=False)

    return img_list, []

def sort_by_origname(input_path):
    io.log_info ("Sort by original filename...")

    img_list = []
    trash_img_list = []
    for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading"):
        filepath = Path(filepath)

        dflimg = DFLIMG.load (filepath)

        if dflimg is None or not dflimg.has_data():
            io.log_err (f"{filepath.name} is not a dfl image file")
            trash_img_list.append( [str(filepath)] )
            continue

        img_list.append( [str(filepath), dflimg.get_source_filename()] )

    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1))
    return img_list, trash_img_list

def sort_by_oneface_in_image(input_path):
    io.log_info ("Sort by one face in images...")
    image_paths = pathex.get_image_paths(input_path)
    a = np.array ([ ( int(x[0]), int(x[1]) ) \
                      for x in [ Path(filepath).stem.split('_') for filepath in image_paths ] if len(x) == 2
                  ])
    if len(a) > 0:
        idxs = np.ndarray.flatten ( np.argwhere ( a[:,1] != 0 ) )
        idxs = np.unique ( a[idxs][:,0] )
        idxs = np.ndarray.flatten ( np.argwhere ( np.array([ x[0] in idxs for x in a ]) == True ) )
        if len(idxs) > 0:
            io.log_info ("Found %d images." % (len(idxs)) )
            img_list = [ (path,) for i,path in enumerate(image_paths) if i not in idxs ]
            trash_img_list = [ (image_paths[x],) for x in idxs ]
            return img_list, trash_img_list

    io.log_info ("Nothing found. Possible recover original filenames first.")
    return [], []

class FinalLoaderSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        #override
        def on_initialize(self, client_dict):
            self.faster = client_dict['faster']

        #override
        def process_data(self, data):
            filepath = Path(data[0])

            try:
                dflimg = DFLIMG.load (filepath)

                if dflimg is None or not dflimg.has_data():
                    self.log_err (f"{filepath.name} is not a dfl image file")
                    return [ 1, [str(filepath)] ]

                bgr = cv2_imread(str(filepath))
                if bgr is None:
                    raise Exception ("Unable to load %s" % (filepath.name) )

                gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
                if self.faster:
                    source_rect = dflimg.get_source_rect()
                    sharpness = mathlib.polygon_area(np.array(source_rect[[0,2,2,0]]).astype(np.float32), np.array(source_rect[[1,1,3,3]]).astype(np.float32))
                else:
                    face_mask = LandmarksProcessor.get_image_hull_mask (gray.shape, dflimg.get_landmarks())     
                    sharpness = estimate_sharpness( (gray[...,None]*face_mask).astype(np.uint8) )

                pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )

                hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
            except Exception as e:
                self.log_err (e)
                return [ 1, [str(filepath)] ]

            return [ 0, [str(filepath), sharpness, hist, yaw, pitch ] ]

        #override
        def get_data_name (self, data):
            #return string identificator of your data
            return data[0]

    #override
    def __init__(self, img_list, faster ):
        self.img_list = img_list

        self.faster = faster
        self.result = []
        self.result_trash = []

        super().__init__('FinalLoader', FinalLoaderSubprocessor.Cli, 60)

    #override
    def on_clients_initialized(self):
        io.progress_bar ("Loading", len (self.img_list))

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def process_info_generator(self):
        cpu_count = min(multiprocessing.cpu_count(), 8)
        io.log_info(f'Running on {cpu_count} CPUs')

        for i in range(cpu_count):
            yield 'CPU%d' % (i), {}, {'faster': self.faster}

    #override
    def get_data(self, host_dict):
        if len (self.img_list) > 0:
            return [self.img_list.pop(0)]

        return None

    #override
    def on_data_return (self, host_dict, data):
        self.img_list.insert(0, data[0])

    #override
    def on_result (self, host_dict, data, result):
        if result[0] == 0:
            self.result.append (result[1])
        else:
            self.result_trash.append (result[1])
        io.progress_bar_inc(1)

    #override
    def get_result(self):
        return self.result, self.result_trash

class FinalHistDissimSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        #override
        def process_data(self, data):
            idx, pitch_yaw_img_list = data

            for p in range ( len(pitch_yaw_img_list) ):

                img_list = pitch_yaw_img_list[p]
                if img_list is not None:
                    for i in range( len(img_list) ):
                        score_total = 0
                        for j in range( len(img_list) ):
                            if i == j:
                                continue
                            score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA)
                        img_list[i][3] = score_total

                    pitch_yaw_img_list[p] = sorted(img_list, key=operator.itemgetter(3), reverse=True)

            return idx, pitch_yaw_img_list

        #override
        def get_data_name (self, data):
            return "Bunch of images"

    #override
    def __init__(self, pitch_yaw_sample_list ):
        self.pitch_yaw_sample_list = pitch_yaw_sample_list
        self.pitch_yaw_sample_list_len = len(pitch_yaw_sample_list)

        self.pitch_yaw_sample_list_idxs = [ i for i in range(self.pitch_yaw_sample_list_len) if self.pitch_yaw_sample_list[i] is not None ]
        self.result = [ None for _ in range(self.pitch_yaw_sample_list_len) ]
        super().__init__('FinalHistDissimSubprocessor', FinalHistDissimSubprocessor.Cli)

    #override
    def process_info_generator(self):
        cpu_count = min(multiprocessing.cpu_count(), 8)
        io.log_info(f'Running on {cpu_count} CPUs')
        for i in range(cpu_count):
            yield 'CPU%d' % (i), {}, {}

    #override
    def on_clients_initialized(self):
        io.progress_bar ("Sort by hist-dissim", len(self.pitch_yaw_sample_list_idxs) )

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def get_data(self, host_dict):
        if len (self.pitch_yaw_sample_list_idxs) > 0:
            idx = self.pitch_yaw_sample_list_idxs.pop(0)

            return idx, self.pitch_yaw_sample_list[idx]
        return None

    #override
    def on_data_return (self, host_dict, data):
        self.pitch_yaw_sample_list_idxs.insert(0, data[0])

    #override
    def on_result (self, host_dict, data, result):
        idx, yaws_sample_list = data
        self.result[idx] = yaws_sample_list
        io.progress_bar_inc(1)

    #override
    def get_result(self):
        return self.result

def sort_best_faster(input_path):
    return sort_best(input_path, faster=True)

def sort_best(input_path, faster=False):
    target_count = io.input_int ("Target number of faces?", 2000)

    io.log_info ("Performing sort by best faces.")
    if faster:
        io.log_info("Using faster algorithm. Faces will be sorted by source-rect-area instead of blur.")

    img_list, trash_img_list = FinalLoaderSubprocessor( pathex.get_image_paths(input_path), faster ).run()
    final_img_list = []

    grads = 128
    imgs_per_grad = round (target_count / grads)

    #instead of math.pi / 2, using -1.2,+1.2 because actually maximum yaw for 2DFAN landmarks are -1.2+1.2
    grads_space = np.linspace (-1.2, 1.2,grads)

    yaws_sample_list = [None]*grads
    for g in io.progress_bar_generator ( range(grads), "Sort by yaw"):
        yaw = grads_space[g]
        next_yaw = grads_space[g+1] if g < grads-1 else yaw

        yaw_samples = []
        for img in img_list:
            s_yaw = -img[3]
            if (g == 0          and s_yaw < next_yaw) or \
               (g < grads-1     and s_yaw >= yaw and s_yaw < next_yaw) or \
               (g == grads-1    and s_yaw >= yaw):
                yaw_samples += [ img ]
        if len(yaw_samples) > 0:
            yaws_sample_list[g] = yaw_samples

    total_lack = 0
    for g in io.progress_bar_generator ( range(grads), ""):
        img_list = yaws_sample_list[g]
        img_list_len = len(img_list) if img_list is not None else 0

        lack = imgs_per_grad - img_list_len
        total_lack += max(lack, 0)

    imgs_per_grad += total_lack // grads


    sharpned_imgs_per_grad = imgs_per_grad*10
    for g in io.progress_bar_generator ( range (grads), "Sort by blur"):
        img_list = yaws_sample_list[g]
        if img_list is None:
            continue

        img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

        if len(img_list) > sharpned_imgs_per_grad:
            trash_img_list += img_list[sharpned_imgs_per_grad:]
            img_list = img_list[0:sharpned_imgs_per_grad]

        yaws_sample_list[g] = img_list


    yaw_pitch_sample_list = [None]*grads
    pitch_grads = imgs_per_grad

    for g in io.progress_bar_generator ( range (grads), "Sort by pitch"):
        img_list = yaws_sample_list[g]
        if img_list is None:
            continue

        pitch_sample_list = [None]*pitch_grads

        grads_space = np.linspace (-math.pi / 2,math.pi / 2, pitch_grads )

        for pg in range (pitch_grads):

            pitch = grads_space[pg]
            next_pitch = grads_space[pg+1] if pg < pitch_grads-1 else pitch

            pitch_samples = []
            for img in img_list:
                s_pitch = img[4]
                if (pg == 0                and s_pitch < next_pitch) or \
                   (pg < pitch_grads-1     and s_pitch >= pitch and s_pitch < next_pitch) or \
                   (pg == pitch_grads-1    and s_pitch >= pitch):
                    pitch_samples += [ img ]

            if len(pitch_samples) > 0:
                pitch_sample_list[pg] = pitch_samples
        yaw_pitch_sample_list[g] = pitch_sample_list

    yaw_pitch_sample_list = FinalHistDissimSubprocessor(yaw_pitch_sample_list).run()

    for g in io.progress_bar_generator (range (grads), "Fetching the best"):
        pitch_sample_list = yaw_pitch_sample_list[g]
        if pitch_sample_list is None:
            continue

        n = imgs_per_grad

        while n > 0:
            n_prev = n
            for pg in range(pitch_grads):
                img_list = pitch_sample_list[pg]
                if img_list is None:
                    continue
                final_img_list += [ img_list.pop(0) ]
                if len(img_list) == 0:
                    pitch_sample_list[pg] = None
                n -= 1
                if n == 0:
                    break
            if n_prev == n:
                break

        for pg in range(pitch_grads):
            img_list = pitch_sample_list[pg]
            if img_list is None:
                continue
            trash_img_list += img_list

    return final_img_list, trash_img_list

"""
def sort_by_vggface(input_path):
    io.log_info ("Sorting by face similarity using VGGFace model...")

    model = VGGFace()

    final_img_list = []
    trash_img_list = []

    image_paths = pathex.get_image_paths(input_path)
    img_list = [ (x,) for x in image_paths ]
    img_list_len = len(img_list)
    img_list_range = [*range(img_list_len)]

    feats = [None]*img_list_len
    for i in io.progress_bar_generator(img_list_range, "Loading"):
        img = cv2_imread( img_list[i][0] ).astype(np.float32)
        img = imagelib.normalize_channels (img, 3)
        img = cv2.resize (img, (224,224) )
        img = img[..., ::-1]
        img[..., 0] -= 93.5940
        img[..., 1] -= 104.7624
        img[..., 2] -= 129.1863
        feats[i] = model.predict( img[None,...] )[0]

    tmp = np.zeros( (img_list_len,) )
    float_inf = float("inf")
    for i in io.progress_bar_generator ( range(img_list_len-1), "Sorting" ):
        i_feat = feats[i]

        for j in img_list_range:
            tmp[j] = npla.norm(i_feat-feats[j]) if j >= i+1 else float_inf

        idx = np.argmin(tmp)

        img_list[i+1], img_list[idx] = img_list[idx], img_list[i+1]
        feats[i+1], feats[idx] = feats[idx], feats[i+1]

    return img_list, trash_img_list
"""

def sort_by_absdiff(input_path):
    io.log_info ("Sorting by absolute difference...")

    is_sim = io.input_bool ("Sort by similar?", True, help_message="Otherwise sort by dissimilar.")

    from core.leras import nn

    device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
    nn.initialize( device_config=device_config, data_format="NHWC" )
    tf = nn.tf

    image_paths = pathex.get_image_paths(input_path)
    image_paths_len = len(image_paths)

    batch_size = 512
    batch_size_remain = image_paths_len % batch_size

    i_t = tf.placeholder (tf.float32, (None,None,None,None) )
    j_t = tf.placeholder (tf.float32, (None,None,None,None) )

    outputs_full = []
    outputs_remain = []

    for i in range(batch_size):
        diff_t = tf.reduce_sum( tf.abs(i_t-j_t[i]), axis=[1,2,3] )
        outputs_full.append(diff_t)
        if i < batch_size_remain:
            outputs_remain.append(diff_t)

    def func_bs_full(i,j):
        return nn.tf_sess.run (outputs_full, feed_dict={i_t:i,j_t:j})

    def func_bs_remain(i,j):
        return nn.tf_sess.run (outputs_remain, feed_dict={i_t:i,j_t:j})

    import h5py
    db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5'
    db_file = h5py.File( str(db_file_path), "w")
    db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip")

    pg_len = image_paths_len // batch_size
    if batch_size_remain != 0:
        pg_len += 1

    pg_len = int( (  pg_len*pg_len - pg_len ) / 2 + pg_len )

    io.progress_bar ("Computing", pg_len)
    j=0
    while j < image_paths_len:
        j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ]
        j_images_len = len(j_images)

        func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full

        i=0
        while i < image_paths_len:
            if i >= j:
                i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ]
                i_images_len = len(i_images)
                result = func (i_images,j_images)
                db[j:j+j_images_len,i:i+i_images_len] = np.array(result)
                io.progress_bar_inc(1)

            i += batch_size
        db_file.flush()
        j += batch_size

    io.progress_bar_close()

    next_id = 0
    sorted = [next_id]
    for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ):
        id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] )
        id_ar = np.argsort(id_ar)


        next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1]
        sorted += [next_id]
    db_file.close()
    db_file_path.unlink()

    img_list = [ (image_paths[x],) for x in sorted]
    return img_list, []

def final_process(input_path, img_list, trash_img_list):
    if len(trash_img_list) != 0:
        parent_input_path = input_path.parent
        trash_path = parent_input_path / (input_path.stem + '_trash')
        trash_path.mkdir (exist_ok=True)

        io.log_info ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) )

        for filename in pathex.get_image_paths(trash_path):
            Path(filename).unlink()

        for i in io.progress_bar_generator( range(len(trash_img_list)), "Moving trash", leave=False):
            src = Path (trash_img_list[i][0])
            dst = trash_path / src.name
            try:
                src.rename (dst)
            except:
                io.log_info ('fail to trashing %s' % (src.name) )

        io.log_info ("")

    if len(img_list) != 0:
        for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming", leave=False):
            src = Path (img_list[i][0])
            dst = input_path / ('%.5d_%s' % (i, src.name ))
            try:
                src.rename (dst)
            except:
                io.log_info ('fail to rename %s' % (src.name) )

        for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming"):
            src = Path (img_list[i][0])
            src = input_path / ('%.5d_%s' % (i, src.name))
            dst = input_path / ('%.5d%s' % (i, src.suffix))
            try:
                src.rename (dst)
            except:
                io.log_info ('fail to rename %s' % (src.name) )

sort_func_methods = {
    'blur':        ("blur", sort_by_blur),
    'motion-blur': ("motion_blur", sort_by_motion_blur),
    'face-yaw':    ("face yaw direction", sort_by_face_yaw),
    'face-pitch':  ("face pitch direction", sort_by_face_pitch),
    'face-source-rect-size' : ("face rect size in source image", sort_by_face_source_rect_size),
    'hist':        ("histogram similarity", sort_by_hist),
    'hist-dissim': ("histogram dissimilarity", sort_by_hist_dissim),
    'brightness':  ("brightness", sort_by_brightness),
    'hue':         ("hue", sort_by_hue),
    'black':       ("amount of black pixels", sort_by_black),
    'origname':    ("original filename", sort_by_origname),
    'oneface':     ("one face in image", sort_by_oneface_in_image),
    'absdiff':     ("absolute pixel difference", sort_by_absdiff),
    'final':       ("best faces", sort_best),
    'final-fast':  ("best faces faster", sort_best_faster),
}

def main (input_path, sort_by_method=None):
    io.log_info ("Running sort tool.\r\n")

    if sort_by_method is None:
        io.log_info(f"Choose sorting method:")

        key_list = list(sort_func_methods.keys())
        for i, key in enumerate(key_list):
            desc, func = sort_func_methods[key]
            io.log_info(f"[{i}] {desc}")

        io.log_info("")
        id = io.input_int("", 5, valid_list=[*range(len(key_list))] )

        sort_by_method = key_list[id]
    else:
        sort_by_method = sort_by_method.lower()

    desc, func = sort_func_methods[sort_by_method]
    img_list, trash_img_list = func(input_path)

    final_process (input_path, img_list, trash_img_list)