|
import multiprocessing |
|
import shutil |
|
|
|
import cv2 |
|
from core import pathex |
|
from core.cv2ex import * |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor |
|
from DFLIMG import * |
|
from facelib import FaceType, LandmarksProcessor |
|
|
|
|
|
class FacesetResizerSubprocessor(Subprocessor): |
|
|
|
|
|
def __init__(self, image_paths, output_dirpath, image_size, face_type=None): |
|
self.image_paths = image_paths |
|
self.output_dirpath = output_dirpath |
|
self.image_size = image_size |
|
self.face_type = face_type |
|
self.result = [] |
|
|
|
super().__init__('FacesetResizer', FacesetResizerSubprocessor.Cli, 600) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar (None, len (self.image_paths)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def process_info_generator(self): |
|
base_dict = {'output_dirpath':self.output_dirpath, 'image_size':self.image_size, 'face_type':self.face_type} |
|
|
|
for device_idx in range( min(8, multiprocessing.cpu_count()) ): |
|
client_dict = base_dict.copy() |
|
device_name = f'CPU #{device_idx}' |
|
client_dict['device_name'] = device_name |
|
yield device_name, {}, client_dict |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.image_paths) > 0: |
|
return self.image_paths.pop(0) |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.image_paths.insert(0, data) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
io.progress_bar_inc(1) |
|
if result[0] == 1: |
|
self.result +=[ (result[1], result[2]) ] |
|
|
|
|
|
def get_result(self): |
|
return self.result |
|
|
|
class Cli(Subprocessor.Cli): |
|
|
|
|
|
def on_initialize(self, client_dict): |
|
self.output_dirpath = client_dict['output_dirpath'] |
|
self.image_size = client_dict['image_size'] |
|
self.face_type = client_dict['face_type'] |
|
self.log_info (f"Running on { client_dict['device_name'] }") |
|
|
|
|
|
def process_data(self, filepath): |
|
try: |
|
dflimg = DFLIMG.load (filepath) |
|
if dflimg is None or not dflimg.has_data(): |
|
self.log_err (f"{filepath.name} is not a dfl image file") |
|
else: |
|
img = cv2_imread(filepath) |
|
h,w = img.shape[:2] |
|
if h != w: |
|
raise Exception(f'w != h in {filepath}') |
|
|
|
image_size = self.image_size |
|
face_type = self.face_type |
|
output_filepath = self.output_dirpath / filepath.name |
|
|
|
if face_type is not None: |
|
lmrks = dflimg.get_landmarks() |
|
mat = LandmarksProcessor.get_transform_mat(lmrks, image_size, face_type) |
|
|
|
img = cv2.warpAffine(img, mat, (image_size, image_size), flags=cv2.INTER_LANCZOS4 ) |
|
img = np.clip(img, 0, 255).astype(np.uint8) |
|
|
|
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] ) |
|
|
|
dfl_dict = dflimg.get_dict() |
|
dflimg = DFLIMG.load (output_filepath) |
|
dflimg.set_dict(dfl_dict) |
|
|
|
xseg_mask = dflimg.get_xseg_mask() |
|
if xseg_mask is not None: |
|
xseg_res = 256 |
|
|
|
xseg_lmrks = lmrks.copy() |
|
xseg_lmrks *= (xseg_res / w) |
|
xseg_mat = LandmarksProcessor.get_transform_mat(xseg_lmrks, xseg_res, face_type) |
|
|
|
xseg_mask = cv2.warpAffine(xseg_mask, xseg_mat, (xseg_res, xseg_res), flags=cv2.INTER_LANCZOS4 ) |
|
xseg_mask[xseg_mask < 0.5] = 0 |
|
xseg_mask[xseg_mask >= 0.5] = 1 |
|
|
|
dflimg.set_xseg_mask(xseg_mask) |
|
|
|
seg_ie_polys = dflimg.get_seg_ie_polys() |
|
|
|
for poly in seg_ie_polys.get_polys(): |
|
poly_pts = poly.get_pts() |
|
poly_pts = LandmarksProcessor.transform_points(poly_pts, mat) |
|
poly.set_points(poly_pts) |
|
|
|
dflimg.set_seg_ie_polys(seg_ie_polys) |
|
|
|
lmrks = LandmarksProcessor.transform_points(lmrks, mat) |
|
dflimg.set_landmarks(lmrks) |
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat() |
|
if image_to_face_mat is not None: |
|
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type ) |
|
dflimg.set_image_to_face_mat(image_to_face_mat) |
|
dflimg.set_face_type( FaceType.toString(face_type) ) |
|
dflimg.save() |
|
|
|
else: |
|
dfl_dict = dflimg.get_dict() |
|
|
|
scale = w / image_size |
|
|
|
img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] ) |
|
|
|
dflimg = DFLIMG.load (output_filepath) |
|
dflimg.set_dict(dfl_dict) |
|
|
|
lmrks = dflimg.get_landmarks() |
|
lmrks /= scale |
|
dflimg.set_landmarks(lmrks) |
|
|
|
seg_ie_polys = dflimg.get_seg_ie_polys() |
|
seg_ie_polys.mult_points( 1.0 / scale) |
|
dflimg.set_seg_ie_polys(seg_ie_polys) |
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat() |
|
|
|
if image_to_face_mat is not None: |
|
face_type = FaceType.fromString ( dflimg.get_face_type() ) |
|
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type ) |
|
dflimg.set_image_to_face_mat(image_to_face_mat) |
|
dflimg.save() |
|
|
|
return (1, filepath, output_filepath) |
|
except: |
|
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}") |
|
|
|
return (0, filepath, None) |
|
|
|
def process_folder ( dirpath): |
|
|
|
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048]) |
|
|
|
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower() |
|
if face_type == 'same': |
|
face_type = None |
|
else: |
|
face_type = {'h' : FaceType.HALF, |
|
'mf' : FaceType.MID_FULL, |
|
'f' : FaceType.FULL, |
|
'wf' : FaceType.WHOLE_FACE, |
|
'head' : FaceType.HEAD}[face_type] |
|
|
|
|
|
output_dirpath = dirpath.parent / (dirpath.name + '_resized') |
|
output_dirpath.mkdir (exist_ok=True, parents=True) |
|
|
|
dirpath_parts = '/'.join( dirpath.parts[-2:]) |
|
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] ) |
|
io.log_info (f"Resizing faceset in {dirpath_parts}") |
|
io.log_info ( f"Processing to {output_dirpath_parts}") |
|
|
|
output_images_paths = pathex.get_image_paths(output_dirpath) |
|
if len(output_images_paths) > 0: |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
|
|
image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )] |
|
result = FacesetResizerSubprocessor ( image_paths, output_dirpath, image_size, face_type).run() |
|
|
|
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True) |
|
if is_merge: |
|
io.log_info (f"Copying processed files to {dirpath_parts}") |
|
|
|
for (filepath, output_filepath) in result: |
|
try: |
|
shutil.copy (output_filepath, filepath) |
|
except: |
|
pass |
|
|
|
io.log_info (f"Removing {output_dirpath_parts}") |
|
shutil.rmtree(output_dirpath) |
|
|