File size: 8,751 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import multiprocessing
import shutil

import cv2
from core import pathex
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import Subprocessor
from DFLIMG import *
from facelib import FaceType, LandmarksProcessor


class FacesetResizerSubprocessor(Subprocessor):

    #override
    def __init__(self, image_paths, output_dirpath, image_size, face_type=None):
        self.image_paths = image_paths
        self.output_dirpath = output_dirpath
        self.image_size = image_size
        self.face_type = face_type
        self.result = []

        super().__init__('FacesetResizer', FacesetResizerSubprocessor.Cli, 600)

    #override
    def on_clients_initialized(self):
        io.progress_bar (None, len (self.image_paths))

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def process_info_generator(self):
        base_dict = {'output_dirpath':self.output_dirpath, 'image_size':self.image_size, 'face_type':self.face_type}

        for device_idx in range( min(8, multiprocessing.cpu_count()) ):
            client_dict = base_dict.copy()
            device_name = f'CPU #{device_idx}'
            client_dict['device_name'] = device_name
            yield device_name, {}, client_dict

    #override
    def get_data(self, host_dict):
        if len (self.image_paths) > 0:
            return self.image_paths.pop(0)

    #override
    def on_data_return (self, host_dict, data):
        self.image_paths.insert(0, data)

    #override
    def on_result (self, host_dict, data, result):
        io.progress_bar_inc(1)
        if result[0] == 1:
            self.result +=[ (result[1], result[2]) ]

    #override
    def get_result(self):
        return self.result

    class Cli(Subprocessor.Cli):

        #override
        def on_initialize(self, client_dict):
            self.output_dirpath = client_dict['output_dirpath']
            self.image_size = client_dict['image_size']
            self.face_type = client_dict['face_type']
            self.log_info (f"Running on { client_dict['device_name'] }")

        #override
        def process_data(self, filepath):
            try:
                dflimg = DFLIMG.load (filepath)
                if dflimg is None or not dflimg.has_data():
                    self.log_err (f"{filepath.name} is not a dfl image file")
                else:
                    img = cv2_imread(filepath)
                    h,w = img.shape[:2]
                    if h != w:
                        raise Exception(f'w != h in {filepath}')
                    
                    image_size = self.image_size
                    face_type = self.face_type
                    output_filepath = self.output_dirpath / filepath.name
                    
                    if face_type is not None:
                        lmrks = dflimg.get_landmarks()
                        mat = LandmarksProcessor.get_transform_mat(lmrks, image_size, face_type)
                        
                        img = cv2.warpAffine(img, mat, (image_size, image_size), flags=cv2.INTER_LANCZOS4 )
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        
                        cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )

                        dfl_dict = dflimg.get_dict()
                        dflimg = DFLIMG.load (output_filepath)
                        dflimg.set_dict(dfl_dict)
                        
                        xseg_mask = dflimg.get_xseg_mask()
                        if xseg_mask is not None:
                            xseg_res = 256
                            
                            xseg_lmrks = lmrks.copy()
                            xseg_lmrks *= (xseg_res / w)
                            xseg_mat = LandmarksProcessor.get_transform_mat(xseg_lmrks, xseg_res, face_type)
                            
                            xseg_mask = cv2.warpAffine(xseg_mask, xseg_mat, (xseg_res, xseg_res), flags=cv2.INTER_LANCZOS4 )
                            xseg_mask[xseg_mask < 0.5] = 0
                            xseg_mask[xseg_mask >= 0.5] = 1

                            dflimg.set_xseg_mask(xseg_mask)
                        
                        seg_ie_polys = dflimg.get_seg_ie_polys()
                        
                        for poly in seg_ie_polys.get_polys():
                            poly_pts = poly.get_pts()
                            poly_pts = LandmarksProcessor.transform_points(poly_pts, mat)
                            poly.set_points(poly_pts)
                            
                        dflimg.set_seg_ie_polys(seg_ie_polys)
                        
                        lmrks = LandmarksProcessor.transform_points(lmrks, mat)
                        dflimg.set_landmarks(lmrks)
    
                        image_to_face_mat = dflimg.get_image_to_face_mat()
                        if image_to_face_mat is not None:
                            image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
                            dflimg.set_image_to_face_mat(image_to_face_mat)
                        dflimg.set_face_type( FaceType.toString(face_type) )
                        dflimg.save()
                        
                    else:
                        dfl_dict = dflimg.get_dict()
                         
                        scale = w / image_size
                        
                        img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_LANCZOS4)                    
                        
                        cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )

                        dflimg = DFLIMG.load (output_filepath)
                        dflimg.set_dict(dfl_dict)
                        
                        lmrks = dflimg.get_landmarks()                    
                        lmrks /= scale
                        dflimg.set_landmarks(lmrks)
                        
                        seg_ie_polys = dflimg.get_seg_ie_polys()
                        seg_ie_polys.mult_points( 1.0 / scale)
                        dflimg.set_seg_ie_polys(seg_ie_polys)
                        
                        image_to_face_mat = dflimg.get_image_to_face_mat()
    
                        if image_to_face_mat is not None:
                            face_type = FaceType.fromString ( dflimg.get_face_type() )
                            image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
                            dflimg.set_image_to_face_mat(image_to_face_mat)
                        dflimg.save()

                    return (1, filepath, output_filepath)
            except:
                self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")

            return (0, filepath, None)

def process_folder ( dirpath):
    
    image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
    
    face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
    if face_type == 'same':
        face_type = None
    else:
        face_type = {'h'  : FaceType.HALF,
                     'mf' : FaceType.MID_FULL,
                     'f'  : FaceType.FULL,
                     'wf' : FaceType.WHOLE_FACE,
                     'head' : FaceType.HEAD}[face_type]
                     

    output_dirpath = dirpath.parent / (dirpath.name + '_resized')
    output_dirpath.mkdir (exist_ok=True, parents=True)

    dirpath_parts = '/'.join( dirpath.parts[-2:])
    output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
    io.log_info (f"Resizing faceset in {dirpath_parts}")
    io.log_info ( f"Processing to {output_dirpath_parts}")

    output_images_paths = pathex.get_image_paths(output_dirpath)
    if len(output_images_paths) > 0:
        for filename in output_images_paths:
            Path(filename).unlink()

    image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
    result = FacesetResizerSubprocessor ( image_paths, output_dirpath, image_size, face_type).run()

    is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
    if is_merge:
        io.log_info (f"Copying processed files to {dirpath_parts}")

        for (filepath, output_filepath) in result:
            try:
                shutil.copy (output_filepath, filepath)
            except:
                pass

        io.log_info (f"Removing {output_dirpath_parts}")
        shutil.rmtree(output_dirpath)