|
import colorsys |
|
import inspect |
|
import json |
|
import multiprocessing |
|
import operator |
|
import os |
|
import pickle |
|
import shutil |
|
import tempfile |
|
import time |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from core import imagelib, pathex |
|
from core.cv2ex import * |
|
from core.interact import interact as io |
|
from core.leras import nn |
|
from samplelib import SampleGeneratorBase |
|
|
|
|
|
class ModelBase(object): |
|
def __init__(self, is_training=False, |
|
is_exporting=False, |
|
saved_models_path=None, |
|
training_data_src_path=None, |
|
training_data_dst_path=None, |
|
pretraining_data_path=None, |
|
pretrained_model_path=None, |
|
no_preview=False, |
|
force_model_name=None, |
|
force_gpu_idxs=None, |
|
cpu_only=False, |
|
debug=False, |
|
force_model_class_name=None, |
|
silent_start=False, |
|
**kwargs): |
|
self.is_training = is_training |
|
self.is_exporting = is_exporting |
|
self.saved_models_path = saved_models_path |
|
self.training_data_src_path = training_data_src_path |
|
self.training_data_dst_path = training_data_dst_path |
|
self.pretraining_data_path = pretraining_data_path |
|
self.pretrained_model_path = pretrained_model_path |
|
self.no_preview = no_preview |
|
self.debug = debug |
|
|
|
self.model_class_name = model_class_name = Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1] |
|
|
|
if force_model_class_name is None: |
|
if force_model_name is not None: |
|
self.model_name = force_model_name |
|
else: |
|
while True: |
|
|
|
saved_models_names = [] |
|
for filepath in pathex.get_file_paths(saved_models_path): |
|
filepath_name = filepath.name |
|
if filepath_name.endswith(f'{model_class_name}_data.dat'): |
|
saved_models_names += [ (filepath_name.split('_')[0], os.path.getmtime(filepath)) ] |
|
|
|
|
|
saved_models_names = sorted(saved_models_names, key=operator.itemgetter(1), reverse=True ) |
|
saved_models_names = [ x[0] for x in saved_models_names ] |
|
|
|
|
|
if len(saved_models_names) != 0: |
|
if silent_start: |
|
self.model_name = saved_models_names[0] |
|
io.log_info(f'Silent start: choosed model "{self.model_name}"') |
|
else: |
|
io.log_info ("Choose one of saved models, or enter a name to create a new model.") |
|
io.log_info ("[r] : rename") |
|
io.log_info ("[d] : delete") |
|
io.log_info ("") |
|
for i, model_name in enumerate(saved_models_names): |
|
s = f"[{i}] : {model_name} " |
|
if i == 0: |
|
s += "- latest" |
|
io.log_info (s) |
|
|
|
inp = io.input_str(f"", "0", show_default_value=False ) |
|
model_idx = -1 |
|
try: |
|
model_idx = np.clip ( int(inp), 0, len(saved_models_names)-1 ) |
|
except: |
|
pass |
|
|
|
if model_idx == -1: |
|
if len(inp) == 1: |
|
is_rename = inp[0] == 'r' |
|
is_delete = inp[0] == 'd' |
|
|
|
if is_rename or is_delete: |
|
if len(saved_models_names) != 0: |
|
|
|
if is_rename: |
|
name = io.input_str(f"Enter the name of the model you want to rename") |
|
elif is_delete: |
|
name = io.input_str(f"Enter the name of the model you want to delete") |
|
|
|
if name in saved_models_names: |
|
|
|
if is_rename: |
|
new_model_name = io.input_str(f"Enter new name of the model") |
|
|
|
for filepath in pathex.get_paths(saved_models_path): |
|
filepath_name = filepath.name |
|
|
|
model_filename, remain_filename = filepath_name.split('_', 1) |
|
if model_filename == name: |
|
|
|
if is_rename: |
|
new_filepath = filepath.parent / ( new_model_name + '_' + remain_filename ) |
|
filepath.rename (new_filepath) |
|
elif is_delete: |
|
filepath.unlink() |
|
continue |
|
|
|
self.model_name = inp |
|
else: |
|
self.model_name = saved_models_names[model_idx] |
|
|
|
else: |
|
self.model_name = io.input_str(f"No saved models found. Enter a name of a new model", "new") |
|
self.model_name = self.model_name.replace('_', ' ') |
|
break |
|
|
|
|
|
self.model_name = self.model_name + '_' + self.model_class_name |
|
else: |
|
self.model_name = force_model_class_name |
|
|
|
self.iter = 0 |
|
self.options = {} |
|
self.options_show_override = {} |
|
self.loss_history = [] |
|
self.sample_for_preview = None |
|
self.choosed_gpu_indexes = None |
|
|
|
model_data = {} |
|
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') ) |
|
if self.model_data_path.exists(): |
|
io.log_info (f"Loading {self.model_name} model...") |
|
model_data = pickle.loads ( self.model_data_path.read_bytes() ) |
|
self.iter = model_data.get('iter',0) |
|
if self.iter != 0: |
|
self.options = model_data['options'] |
|
self.loss_history = model_data.get('loss_history', []) |
|
self.sample_for_preview = model_data.get('sample_for_preview', None) |
|
self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None) |
|
|
|
if self.is_first_run(): |
|
io.log_info ("\nModel first run.") |
|
|
|
if silent_start: |
|
self.device_config = nn.DeviceConfig.BestGPU() |
|
io.log_info (f"Silent start: choosed device {'CPU' if self.device_config.cpu_only else self.device_config.devices[0].name}") |
|
else: |
|
self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \ |
|
if not cpu_only else nn.DeviceConfig.CPU() |
|
|
|
nn.initialize(self.device_config) |
|
|
|
|
|
self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat' |
|
self.default_options = {} |
|
if self.default_options_path.exists(): |
|
try: |
|
self.default_options = pickle.loads ( self.default_options_path.read_bytes() ) |
|
except: |
|
pass |
|
|
|
self.choose_preview_history = False |
|
self.batch_size = self.load_or_def_option('batch_size', 1) |
|
|
|
|
|
io.input_skip_pending() |
|
self.on_initialize_options() |
|
|
|
if self.is_first_run(): |
|
|
|
self.default_options_path.write_bytes( pickle.dumps (self.options) ) |
|
|
|
self.autobackup_hour = self.options.get('autobackup_hour', 0) |
|
self.write_preview_history = self.options.get('write_preview_history', False) |
|
self.target_iter = self.options.get('target_iter',0) |
|
self.random_flip = self.options.get('random_flip',True) |
|
self.random_src_flip = self.options.get('random_src_flip', False) |
|
self.random_dst_flip = self.options.get('random_dst_flip', True) |
|
|
|
self.on_initialize() |
|
self.options['batch_size'] = self.batch_size |
|
|
|
self.preview_history_writer = None |
|
if self.is_training: |
|
self.preview_history_path = self.saved_models_path / ( f'{self.get_model_name()}_history' ) |
|
self.autobackups_path = self.saved_models_path / ( f'{self.get_model_name()}_autobackups' ) |
|
|
|
if self.write_preview_history or io.is_colab(): |
|
if not self.preview_history_path.exists(): |
|
self.preview_history_path.mkdir(exist_ok=True) |
|
else: |
|
if self.iter == 0: |
|
for filename in pathex.get_image_paths(self.preview_history_path): |
|
Path(filename).unlink() |
|
|
|
if self.generator_list is None: |
|
raise ValueError( 'You didnt set_training_data_generators()') |
|
else: |
|
for i, generator in enumerate(self.generator_list): |
|
if not isinstance(generator, SampleGeneratorBase): |
|
raise ValueError('training data generator is not subclass of SampleGeneratorBase') |
|
|
|
self.update_sample_for_preview(choose_preview_history=self.choose_preview_history) |
|
|
|
if self.autobackup_hour != 0: |
|
self.autobackup_start_time = time.time() |
|
|
|
if not self.autobackups_path.exists(): |
|
self.autobackups_path.mkdir(exist_ok=True) |
|
|
|
io.log_info( self.get_summary_text() ) |
|
|
|
def update_sample_for_preview(self, choose_preview_history=False, force_new=False): |
|
if self.sample_for_preview is None or choose_preview_history or force_new: |
|
if choose_preview_history and io.is_support_windows(): |
|
wnd_name = "[p] - next. [space] - switch preview type. [enter] - confirm." |
|
io.log_info (f"Choose image for the preview history. {wnd_name}") |
|
io.named_window(wnd_name) |
|
io.capture_keys(wnd_name) |
|
choosed = False |
|
preview_id_counter = 0 |
|
while not choosed: |
|
self.sample_for_preview = self.generate_next_samples() |
|
previews = self.get_history_previews() |
|
|
|
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) ) |
|
|
|
while True: |
|
key_events = io.get_key_events(wnd_name) |
|
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False) |
|
if key == ord('\n') or key == ord('\r'): |
|
choosed = True |
|
break |
|
elif key == ord(' '): |
|
preview_id_counter += 1 |
|
break |
|
elif key == ord('p'): |
|
break |
|
|
|
try: |
|
io.process_messages(0.1) |
|
except KeyboardInterrupt: |
|
choosed = True |
|
|
|
io.destroy_window(wnd_name) |
|
else: |
|
self.sample_for_preview = self.generate_next_samples() |
|
|
|
try: |
|
self.get_history_previews() |
|
except: |
|
self.sample_for_preview = self.generate_next_samples() |
|
|
|
self.last_sample = self.sample_for_preview |
|
|
|
def load_or_def_option(self, name, def_value): |
|
options_val = self.options.get(name, None) |
|
if options_val is not None: |
|
return options_val |
|
|
|
def_opt_val = self.default_options.get(name, None) |
|
if def_opt_val is not None: |
|
return def_opt_val |
|
|
|
return def_value |
|
|
|
def ask_override(self): |
|
return self.is_training and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 ) |
|
|
|
def ask_autobackup_hour(self, default_value=0): |
|
default_autobackup_hour = self.options['autobackup_hour'] = self.load_or_def_option('autobackup_hour', default_value) |
|
self.options['autobackup_hour'] = io.input_int(f"Autobackup every N hour", default_autobackup_hour, add_info="0..24", help_message="Autobackup model files with preview every N hour. Latest backup located in model/<>_autobackups/01") |
|
|
|
def ask_write_preview_history(self, default_value=False): |
|
default_write_preview_history = self.load_or_def_option('write_preview_history', default_value) |
|
self.options['write_preview_history'] = io.input_bool(f"Write preview history", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.") |
|
|
|
if self.options['write_preview_history']: |
|
if io.is_support_windows(): |
|
self.choose_preview_history = io.input_bool("Choose image for the preview history", False) |
|
elif io.is_colab(): |
|
self.choose_preview_history = io.input_bool("Randomly choose new image for preview history", False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person") |
|
|
|
def ask_target_iter(self, default_value=0): |
|
default_target_iter = self.load_or_def_option('target_iter', default_value) |
|
self.options['target_iter'] = max(0, io.input_int("Target iteration", default_target_iter)) |
|
|
|
def ask_random_flip(self): |
|
default_random_flip = self.load_or_def_option('random_flip', True) |
|
self.options['random_flip'] = io.input_bool("Flip faces randomly", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.") |
|
|
|
def ask_random_src_flip(self): |
|
default_random_src_flip = self.load_or_def_option('random_src_flip', False) |
|
self.options['random_src_flip'] = io.input_bool("Flip SRC faces randomly", default_random_src_flip, help_message="Random horizontal flip SRC faceset. Covers more angles, but the face may look less naturally.") |
|
|
|
def ask_random_dst_flip(self): |
|
default_random_dst_flip = self.load_or_def_option('random_dst_flip', True) |
|
self.options['random_dst_flip'] = io.input_bool("Flip DST faces randomly", default_random_dst_flip, help_message="Random horizontal flip DST faceset. Makes generalization of src->dst better, if src random flip is not enabled.") |
|
|
|
def ask_batch_size(self, suggest_batch_size=None, range=None): |
|
default_batch_size = self.load_or_def_option('batch_size', suggest_batch_size or self.batch_size) |
|
|
|
batch_size = max(0, io.input_int("Batch_size", default_batch_size, valid_range=range, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually.")) |
|
|
|
if range is not None: |
|
batch_size = np.clip(batch_size, range[0], range[1]) |
|
|
|
self.options['batch_size'] = self.batch_size = batch_size |
|
|
|
|
|
|
|
def on_initialize_options(self): |
|
pass |
|
|
|
|
|
def on_initialize(self): |
|
''' |
|
initialize your models |
|
|
|
store and retrieve your model options in self.options[''] |
|
|
|
check example |
|
''' |
|
pass |
|
|
|
|
|
def onSave(self): |
|
|
|
pass |
|
|
|
|
|
def onTrainOneIter(self, sample, generator_list): |
|
|
|
|
|
|
|
return ( ('loss_src', 0), ('loss_dst', 0) ) |
|
|
|
|
|
def onGetPreview(self, sample, for_history=False): |
|
|
|
|
|
return [] |
|
|
|
|
|
def get_model_name(self): |
|
return self.model_name |
|
|
|
|
|
def get_model_filename_list(self): |
|
return [] |
|
|
|
|
|
def get_MergerConfig(self): |
|
|
|
raise NotImplementedError |
|
|
|
def get_pretraining_data_path(self): |
|
return self.pretraining_data_path |
|
|
|
def get_target_iter(self): |
|
return self.target_iter |
|
|
|
def is_reached_iter_goal(self): |
|
return self.target_iter != 0 and self.iter >= self.target_iter |
|
|
|
def get_previews(self): |
|
return self.onGetPreview ( self.last_sample ) |
|
|
|
def get_history_previews(self): |
|
return self.onGetPreview (self.sample_for_preview, for_history=True) |
|
|
|
def get_preview_history_writer(self): |
|
if self.preview_history_writer is None: |
|
self.preview_history_writer = PreviewHistoryWriter() |
|
return self.preview_history_writer |
|
|
|
def save(self): |
|
Path( self.get_summary_path() ).write_text( self.get_summary_text() ) |
|
|
|
self.onSave() |
|
|
|
model_data = { |
|
'iter': self.iter, |
|
'options': self.options, |
|
'loss_history': self.loss_history, |
|
'sample_for_preview' : self.sample_for_preview, |
|
'choosed_gpu_indexes' : self.choosed_gpu_indexes, |
|
} |
|
pathex.write_bytes_safe (self.model_data_path, pickle.dumps(model_data) ) |
|
|
|
if self.autobackup_hour != 0: |
|
diff_hour = int ( (time.time() - self.autobackup_start_time) // 3600 ) |
|
|
|
if diff_hour > 0 and diff_hour % self.autobackup_hour == 0: |
|
self.autobackup_start_time += self.autobackup_hour*3600 |
|
self.create_backup() |
|
|
|
def create_backup(self): |
|
io.log_info ("Creating backup...", end='\r') |
|
|
|
if not self.autobackups_path.exists(): |
|
self.autobackups_path.mkdir(exist_ok=True) |
|
|
|
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ] |
|
bckp_filename_list += [ str(self.get_summary_path()), str(self.model_data_path) ] |
|
|
|
for i in range(24,0,-1): |
|
idx_str = '%.2d' % i |
|
next_idx_str = '%.2d' % (i+1) |
|
|
|
idx_backup_path = self.autobackups_path / idx_str |
|
next_idx_packup_path = self.autobackups_path / next_idx_str |
|
|
|
if idx_backup_path.exists(): |
|
if i == 24: |
|
pathex.delete_all_files(idx_backup_path) |
|
else: |
|
next_idx_packup_path.mkdir(exist_ok=True) |
|
pathex.move_all_files (idx_backup_path, next_idx_packup_path) |
|
|
|
if i == 1: |
|
idx_backup_path.mkdir(exist_ok=True) |
|
for filename in bckp_filename_list: |
|
shutil.copy ( str(filename), str(idx_backup_path / Path(filename).name) ) |
|
|
|
previews = self.get_previews() |
|
plist = [] |
|
for i in range(len(previews)): |
|
name, bgr = previews[i] |
|
plist += [ (bgr, idx_backup_path / ( ('preview_%s.jpg') % (name)) ) ] |
|
|
|
if len(plist) != 0: |
|
self.get_preview_history_writer().post(plist, self.loss_history, self.iter) |
|
|
|
def debug_one_iter(self): |
|
images = [] |
|
for generator in self.generator_list: |
|
for i,batch in enumerate(next(generator)): |
|
if len(batch.shape) == 4: |
|
images.append( batch[0] ) |
|
|
|
return imagelib.equalize_and_stack_square (images) |
|
|
|
def generate_next_samples(self): |
|
sample = [] |
|
for generator in self.generator_list: |
|
if generator.is_initialized(): |
|
sample.append ( generator.generate_next() ) |
|
else: |
|
sample.append ( [] ) |
|
self.last_sample = sample |
|
return sample |
|
|
|
|
|
def should_save_preview_history(self): |
|
return (not io.is_colab() and self.iter % 10 == 0) or (io.is_colab() and self.iter % 100 == 0) |
|
|
|
def train_one_iter(self): |
|
|
|
iter_time = time.time() |
|
losses = self.onTrainOneIter() |
|
iter_time = time.time() - iter_time |
|
|
|
self.loss_history.append ( [float(loss[1]) for loss in losses] ) |
|
|
|
if self.should_save_preview_history(): |
|
plist = [] |
|
|
|
if io.is_colab(): |
|
previews = self.get_previews() |
|
for i in range(len(previews)): |
|
name, bgr = previews[i] |
|
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ] |
|
|
|
if self.write_preview_history: |
|
previews = self.get_history_previews() |
|
for i in range(len(previews)): |
|
name, bgr = previews[i] |
|
path = self.preview_history_path / name |
|
plist += [ ( bgr, str ( path / ( f'{self.iter:07d}.jpg') ) ) ] |
|
if not io.is_colab(): |
|
plist += [ ( bgr, str ( path / ( '_last.jpg' ) )) ] |
|
|
|
if len(plist) != 0: |
|
self.get_preview_history_writer().post(plist, self.loss_history, self.iter) |
|
|
|
self.iter += 1 |
|
|
|
return self.iter, iter_time |
|
|
|
def pass_one_iter(self): |
|
self.generate_next_samples() |
|
|
|
def finalize(self): |
|
nn.close_session() |
|
|
|
def is_first_run(self): |
|
return self.iter == 0 |
|
|
|
def is_debug(self): |
|
return self.debug |
|
|
|
def set_batch_size(self, batch_size): |
|
self.batch_size = batch_size |
|
|
|
def get_batch_size(self): |
|
return self.batch_size |
|
|
|
def get_iter(self): |
|
return self.iter |
|
|
|
def set_iter(self, iter): |
|
self.iter = iter |
|
self.loss_history = self.loss_history[:iter] |
|
|
|
def get_loss_history(self): |
|
return self.loss_history |
|
|
|
def set_training_data_generators (self, generator_list): |
|
self.generator_list = generator_list |
|
|
|
def get_training_data_generators (self): |
|
return self.generator_list |
|
|
|
def get_model_root_path(self): |
|
return self.saved_models_path |
|
|
|
def get_strpath_storage_for_file(self, filename): |
|
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) ) |
|
|
|
def get_summary_path(self): |
|
return self.get_strpath_storage_for_file('summary.txt') |
|
|
|
def get_summary_text(self): |
|
visible_options = self.options.copy() |
|
visible_options.update(self.options_show_override) |
|
|
|
|
|
|
|
width_name = max([len(k) for k in visible_options.keys()] + [17]) + 1 |
|
width_value = max([len(str(x)) for x in visible_options.values()] + [len(str(self.get_iter())), len(self.get_model_name())]) + 1 |
|
if len(self.device_config.devices) != 0: |
|
width_value = max([len(device.name)+1 for device in self.device_config.devices] + [width_value]) |
|
width_total = width_name + width_value + 2 |
|
|
|
summary_text = [] |
|
summary_text += [f'=={" Model Summary ":=^{width_total}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.get_iter()): <{width_value}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
|
|
summary_text += [f'=={" Model Options ":-^{width_total}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
for key in visible_options.keys(): |
|
summary_text += [f'=={key: >{width_name}}: {str(visible_options[key]): <{width_value}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
|
|
summary_text += [f'=={" Running On ":-^{width_total}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
if len(self.device_config.devices) == 0: |
|
summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] |
|
else: |
|
for device in self.device_config.devices: |
|
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] |
|
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] |
|
vram_str = f'{device.total_mem_gb:.2f}GB' |
|
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}=='] |
|
summary_text += [f'=={" "*width_total}=='] |
|
summary_text += [f'=={"="*width_total}=='] |
|
summary_text = "\n".join (summary_text) |
|
return summary_text |
|
|
|
@staticmethod |
|
def get_loss_history_preview(loss_history, iter, w, c): |
|
loss_history = np.array (loss_history.copy()) |
|
|
|
lh_height = 100 |
|
lh_img = np.ones ( (lh_height,w,c) ) * 0.1 |
|
|
|
if len(loss_history) != 0: |
|
loss_count = len(loss_history[0]) |
|
lh_len = len(loss_history) |
|
|
|
l_per_col = lh_len / w |
|
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p], |
|
*[ loss_history[i_ab][p] |
|
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) ) |
|
] |
|
) |
|
for p in range(loss_count) |
|
] |
|
for col in range(w) |
|
] |
|
|
|
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p], |
|
*[ loss_history[i_ab][p] |
|
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) ) |
|
] |
|
) |
|
for p in range(loss_count) |
|
] |
|
for col in range(w) |
|
] |
|
|
|
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2 |
|
|
|
for col in range(0, w): |
|
for p in range(0,loss_count): |
|
point_color = [1.0]*c |
|
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 ) |
|
|
|
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) ) |
|
ph_max = np.clip( ph_max, 0, lh_height-1 ) |
|
|
|
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) ) |
|
ph_min = np.clip( ph_min, 0, lh_height-1 ) |
|
|
|
for ph in range(ph_min, ph_max+1): |
|
lh_img[ (lh_height-ph-1), col ] = point_color |
|
|
|
lh_lines = 5 |
|
lh_line_height = (lh_height-1)/lh_lines |
|
for i in range(0,lh_lines+1): |
|
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c |
|
|
|
last_line_t = int((lh_lines-1)*lh_line_height) |
|
last_line_b = int(lh_lines*lh_line_height) |
|
|
|
lh_text = 'Iter: %d' % (iter) if iter != 0 else '' |
|
|
|
lh_img[last_line_t:last_line_b, 0:w] += imagelib.get_text_image ( (last_line_b-last_line_t,w,c), lh_text, color=[0.8]*c ) |
|
return lh_img |
|
|
|
class PreviewHistoryWriter(): |
|
def __init__(self): |
|
self.sq = multiprocessing.Queue() |
|
self.p = multiprocessing.Process(target=self.process, args=( self.sq, )) |
|
self.p.daemon = True |
|
self.p.start() |
|
|
|
def process(self, sq): |
|
while True: |
|
while not sq.empty(): |
|
plist, loss_history, iter = sq.get() |
|
|
|
preview_lh_cache = {} |
|
for preview, filepath in plist: |
|
filepath = Path(filepath) |
|
i = (preview.shape[1], preview.shape[2]) |
|
|
|
preview_lh = preview_lh_cache.get(i, None) |
|
if preview_lh is None: |
|
preview_lh = ModelBase.get_loss_history_preview(loss_history, iter, preview.shape[1], preview.shape[2]) |
|
preview_lh_cache[i] = preview_lh |
|
|
|
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8) |
|
|
|
filepath.parent.mkdir(parents=True, exist_ok=True) |
|
cv2_imwrite (filepath, img ) |
|
|
|
time.sleep(0.01) |
|
|
|
def post(self, plist, loss_history, iter): |
|
self.sq.put ( (plist, loss_history, iter) ) |
|
|
|
|
|
def __getstate__(self): |
|
return dict() |
|
def __setstate__(self, d): |
|
self.__dict__.update(d) |
|
|