File size: 29,741 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
import colorsys
import inspect
import json
import multiprocessing
import operator
import os
import pickle
import shutil
import tempfile
import time
from pathlib import Path
import cv2
import numpy as np
from core import imagelib, pathex
from core.cv2ex import *
from core.interact import interact as io
from core.leras import nn
from samplelib import SampleGeneratorBase
class ModelBase(object):
def __init__(self, is_training=False,
is_exporting=False,
saved_models_path=None,
training_data_src_path=None,
training_data_dst_path=None,
pretraining_data_path=None,
pretrained_model_path=None,
no_preview=False,
force_model_name=None,
force_gpu_idxs=None,
cpu_only=False,
debug=False,
force_model_class_name=None,
silent_start=False,
**kwargs):
self.is_training = is_training
self.is_exporting = is_exporting
self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
self.pretraining_data_path = pretraining_data_path
self.pretrained_model_path = pretrained_model_path
self.no_preview = no_preview
self.debug = debug
self.model_class_name = model_class_name = Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
if force_model_class_name is None:
if force_model_name is not None:
self.model_name = force_model_name
else:
while True:
# gather all model dat files
saved_models_names = []
for filepath in pathex.get_file_paths(saved_models_path):
filepath_name = filepath.name
if filepath_name.endswith(f'{model_class_name}_data.dat'):
saved_models_names += [ (filepath_name.split('_')[0], os.path.getmtime(filepath)) ]
# sort by modified datetime
saved_models_names = sorted(saved_models_names, key=operator.itemgetter(1), reverse=True )
saved_models_names = [ x[0] for x in saved_models_names ]
if len(saved_models_names) != 0:
if silent_start:
self.model_name = saved_models_names[0]
io.log_info(f'Silent start: choosed model "{self.model_name}"')
else:
io.log_info ("Choose one of saved models, or enter a name to create a new model.")
io.log_info ("[r] : rename")
io.log_info ("[d] : delete")
io.log_info ("")
for i, model_name in enumerate(saved_models_names):
s = f"[{i}] : {model_name} "
if i == 0:
s += "- latest"
io.log_info (s)
inp = io.input_str(f"", "0", show_default_value=False )
model_idx = -1
try:
model_idx = np.clip ( int(inp), 0, len(saved_models_names)-1 )
except:
pass
if model_idx == -1:
if len(inp) == 1:
is_rename = inp[0] == 'r'
is_delete = inp[0] == 'd'
if is_rename or is_delete:
if len(saved_models_names) != 0:
if is_rename:
name = io.input_str(f"Enter the name of the model you want to rename")
elif is_delete:
name = io.input_str(f"Enter the name of the model you want to delete")
if name in saved_models_names:
if is_rename:
new_model_name = io.input_str(f"Enter new name of the model")
for filepath in pathex.get_paths(saved_models_path):
filepath_name = filepath.name
model_filename, remain_filename = filepath_name.split('_', 1)
if model_filename == name:
if is_rename:
new_filepath = filepath.parent / ( new_model_name + '_' + remain_filename )
filepath.rename (new_filepath)
elif is_delete:
filepath.unlink()
continue
self.model_name = inp
else:
self.model_name = saved_models_names[model_idx]
else:
self.model_name = io.input_str(f"No saved models found. Enter a name of a new model", "new")
self.model_name = self.model_name.replace('_', ' ')
break
self.model_name = self.model_name + '_' + self.model_class_name
else:
self.model_name = force_model_class_name
self.iter = 0
self.options = {}
self.options_show_override = {}
self.loss_history = []
self.sample_for_preview = None
self.choosed_gpu_indexes = None
model_data = {}
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
if self.model_data_path.exists():
io.log_info (f"Loading {self.model_name} model...")
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.iter = model_data.get('iter',0)
if self.iter != 0:
self.options = model_data['options']
self.loss_history = model_data.get('loss_history', [])
self.sample_for_preview = model_data.get('sample_for_preview', None)
self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None)
if self.is_first_run():
io.log_info ("\nModel first run.")
if silent_start:
self.device_config = nn.DeviceConfig.BestGPU()
io.log_info (f"Silent start: choosed device {'CPU' if self.device_config.cpu_only else self.device_config.devices[0].name}")
else:
self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \
if not cpu_only else nn.DeviceConfig.CPU()
nn.initialize(self.device_config)
####
self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat'
self.default_options = {}
if self.default_options_path.exists():
try:
self.default_options = pickle.loads ( self.default_options_path.read_bytes() )
except:
pass
self.choose_preview_history = False
self.batch_size = self.load_or_def_option('batch_size', 1)
#####
io.input_skip_pending()
self.on_initialize_options()
if self.is_first_run():
# save as default options only for first run model initialize
self.default_options_path.write_bytes( pickle.dumps (self.options) )
self.autobackup_hour = self.options.get('autobackup_hour', 0)
self.write_preview_history = self.options.get('write_preview_history', False)
self.target_iter = self.options.get('target_iter',0)
self.random_flip = self.options.get('random_flip',True)
self.random_src_flip = self.options.get('random_src_flip', False)
self.random_dst_flip = self.options.get('random_dst_flip', True)
self.on_initialize()
self.options['batch_size'] = self.batch_size
self.preview_history_writer = None
if self.is_training:
self.preview_history_path = self.saved_models_path / ( f'{self.get_model_name()}_history' )
self.autobackups_path = self.saved_models_path / ( f'{self.get_model_name()}_autobackups' )
if self.write_preview_history or io.is_colab():
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.iter == 0:
for filename in pathex.get_image_paths(self.preview_history_path):
Path(filename).unlink()
if self.generator_list is None:
raise ValueError( 'You didnt set_training_data_generators()')
else:
for i, generator in enumerate(self.generator_list):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
self.update_sample_for_preview(choose_preview_history=self.choose_preview_history)
if self.autobackup_hour != 0:
self.autobackup_start_time = time.time()
if not self.autobackups_path.exists():
self.autobackups_path.mkdir(exist_ok=True)
io.log_info( self.get_summary_text() )
def update_sample_for_preview(self, choose_preview_history=False, force_new=False):
if self.sample_for_preview is None or choose_preview_history or force_new:
if choose_preview_history and io.is_support_windows():
wnd_name = "[p] - next. [space] - switch preview type. [enter] - confirm."
io.log_info (f"Choose image for the preview history. {wnd_name}")
io.named_window(wnd_name)
io.capture_keys(wnd_name)
choosed = False
preview_id_counter = 0
while not choosed:
self.sample_for_preview = self.generate_next_samples()
previews = self.get_history_previews()
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )
while True:
key_events = io.get_key_events(wnd_name)
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
if key == ord('\n') or key == ord('\r'):
choosed = True
break
elif key == ord(' '):
preview_id_counter += 1
break
elif key == ord('p'):
break
try:
io.process_messages(0.1)
except KeyboardInterrupt:
choosed = True
io.destroy_window(wnd_name)
else:
self.sample_for_preview = self.generate_next_samples()
try:
self.get_history_previews()
except:
self.sample_for_preview = self.generate_next_samples()
self.last_sample = self.sample_for_preview
def load_or_def_option(self, name, def_value):
options_val = self.options.get(name, None)
if options_val is not None:
return options_val
def_opt_val = self.default_options.get(name, None)
if def_opt_val is not None:
return def_opt_val
return def_value
def ask_override(self):
return self.is_training and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
def ask_autobackup_hour(self, default_value=0):
default_autobackup_hour = self.options['autobackup_hour'] = self.load_or_def_option('autobackup_hour', default_value)
self.options['autobackup_hour'] = io.input_int(f"Autobackup every N hour", default_autobackup_hour, add_info="0..24", help_message="Autobackup model files with preview every N hour. Latest backup located in model/<>_autobackups/01")
def ask_write_preview_history(self, default_value=False):
default_write_preview_history = self.load_or_def_option('write_preview_history', default_value)
self.options['write_preview_history'] = io.input_bool(f"Write preview history", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
if self.options['write_preview_history']:
if io.is_support_windows():
self.choose_preview_history = io.input_bool("Choose image for the preview history", False)
elif io.is_colab():
self.choose_preview_history = io.input_bool("Randomly choose new image for preview history", False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
def ask_target_iter(self, default_value=0):
default_target_iter = self.load_or_def_option('target_iter', default_value)
self.options['target_iter'] = max(0, io.input_int("Target iteration", default_target_iter))
def ask_random_flip(self):
default_random_flip = self.load_or_def_option('random_flip', True)
self.options['random_flip'] = io.input_bool("Flip faces randomly", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
def ask_random_src_flip(self):
default_random_src_flip = self.load_or_def_option('random_src_flip', False)
self.options['random_src_flip'] = io.input_bool("Flip SRC faces randomly", default_random_src_flip, help_message="Random horizontal flip SRC faceset. Covers more angles, but the face may look less naturally.")
def ask_random_dst_flip(self):
default_random_dst_flip = self.load_or_def_option('random_dst_flip', True)
self.options['random_dst_flip'] = io.input_bool("Flip DST faces randomly", default_random_dst_flip, help_message="Random horizontal flip DST faceset. Makes generalization of src->dst better, if src random flip is not enabled.")
def ask_batch_size(self, suggest_batch_size=None, range=None):
default_batch_size = self.load_or_def_option('batch_size', suggest_batch_size or self.batch_size)
batch_size = max(0, io.input_int("Batch_size", default_batch_size, valid_range=range, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
if range is not None:
batch_size = np.clip(batch_size, range[0], range[1])
self.options['batch_size'] = self.batch_size = batch_size
#overridable
def on_initialize_options(self):
pass
#overridable
def on_initialize(self):
'''
initialize your models
store and retrieve your model options in self.options['']
check example
'''
pass
#overridable
def onSave(self):
#save your models here
pass
#overridable
def onTrainOneIter(self, sample, generator_list):
#train your models here
#return array of losses
return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable
def onGetPreview(self, sample, for_history=False):
#you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ]
return []
#overridable if you want model name differs from folder name
def get_model_name(self):
return self.model_name
#overridable , return [ [model, filename],... ] list
def get_model_filename_list(self):
return []
#overridable
def get_MergerConfig(self):
#return predictor_func, predictor_input_shape, MergerConfig() for the model
raise NotImplementedError
def get_pretraining_data_path(self):
return self.pretraining_data_path
def get_target_iter(self):
return self.target_iter
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
def get_previews(self):
return self.onGetPreview ( self.last_sample )
def get_history_previews(self):
return self.onGetPreview (self.sample_for_preview, for_history=True)
def get_preview_history_writer(self):
if self.preview_history_writer is None:
self.preview_history_writer = PreviewHistoryWriter()
return self.preview_history_writer
def save(self):
Path( self.get_summary_path() ).write_text( self.get_summary_text() )
self.onSave()
model_data = {
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview' : self.sample_for_preview,
'choosed_gpu_indexes' : self.choosed_gpu_indexes,
}
pathex.write_bytes_safe (self.model_data_path, pickle.dumps(model_data) )
if self.autobackup_hour != 0:
diff_hour = int ( (time.time() - self.autobackup_start_time) // 3600 )
if diff_hour > 0 and diff_hour % self.autobackup_hour == 0:
self.autobackup_start_time += self.autobackup_hour*3600
self.create_backup()
def create_backup(self):
io.log_info ("Creating backup...", end='\r')
if not self.autobackups_path.exists():
self.autobackups_path.mkdir(exist_ok=True)
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
bckp_filename_list += [ str(self.get_summary_path()), str(self.model_data_path) ]
for i in range(24,0,-1):
idx_str = '%.2d' % i
next_idx_str = '%.2d' % (i+1)
idx_backup_path = self.autobackups_path / idx_str
next_idx_packup_path = self.autobackups_path / next_idx_str
if idx_backup_path.exists():
if i == 24:
pathex.delete_all_files(idx_backup_path)
else:
next_idx_packup_path.mkdir(exist_ok=True)
pathex.move_all_files (idx_backup_path, next_idx_packup_path)
if i == 1:
idx_backup_path.mkdir(exist_ok=True)
for filename in bckp_filename_list:
shutil.copy ( str(filename), str(idx_backup_path / Path(filename).name) )
previews = self.get_previews()
plist = []
for i in range(len(previews)):
name, bgr = previews[i]
plist += [ (bgr, idx_backup_path / ( ('preview_%s.jpg') % (name)) ) ]
if len(plist) != 0:
self.get_preview_history_writer().post(plist, self.loss_history, self.iter)
def debug_one_iter(self):
images = []
for generator in self.generator_list:
for i,batch in enumerate(next(generator)):
if len(batch.shape) == 4:
images.append( batch[0] )
return imagelib.equalize_and_stack_square (images)
def generate_next_samples(self):
sample = []
for generator in self.generator_list:
if generator.is_initialized():
sample.append ( generator.generate_next() )
else:
sample.append ( [] )
self.last_sample = sample
return sample
#overridable
def should_save_preview_history(self):
return (not io.is_colab() and self.iter % 10 == 0) or (io.is_colab() and self.iter % 100 == 0)
def train_one_iter(self):
iter_time = time.time()
losses = self.onTrainOneIter()
iter_time = time.time() - iter_time
self.loss_history.append ( [float(loss[1]) for loss in losses] )
if self.should_save_preview_history():
plist = []
if io.is_colab():
previews = self.get_previews()
for i in range(len(previews)):
name, bgr = previews[i]
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]
if self.write_preview_history:
previews = self.get_history_previews()
for i in range(len(previews)):
name, bgr = previews[i]
path = self.preview_history_path / name
plist += [ ( bgr, str ( path / ( f'{self.iter:07d}.jpg') ) ) ]
if not io.is_colab():
plist += [ ( bgr, str ( path / ( '_last.jpg' ) )) ]
if len(plist) != 0:
self.get_preview_history_writer().post(plist, self.loss_history, self.iter)
self.iter += 1
return self.iter, iter_time
def pass_one_iter(self):
self.generate_next_samples()
def finalize(self):
nn.close_session()
def is_first_run(self):
return self.iter == 0
def is_debug(self):
return self.debug
def set_batch_size(self, batch_size):
self.batch_size = batch_size
def get_batch_size(self):
return self.batch_size
def get_iter(self):
return self.iter
def set_iter(self, iter):
self.iter = iter
self.loss_history = self.loss_history[:iter]
def get_loss_history(self):
return self.loss_history
def set_training_data_generators (self, generator_list):
self.generator_list = generator_list
def get_training_data_generators (self):
return self.generator_list
def get_model_root_path(self):
return self.saved_models_path
def get_strpath_storage_for_file(self, filename):
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
def get_summary_path(self):
return self.get_strpath_storage_for_file('summary.txt')
def get_summary_text(self):
visible_options = self.options.copy()
visible_options.update(self.options_show_override)
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in visible_options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in visible_options.values()] + [len(str(self.get_iter())), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if len(self.device_config.devices) != 0: #Check length of GPU names
width_value = max([len(device.name)+1 for device in self.device_config.devices] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
summary_text = []
summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.get_iter()): <{width_value}}=='] # Iter
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
summary_text += [f'=={" "*width_total}==']
for key in visible_options.keys():
summary_text += [f'=={key: >{width_name}}: {str(visible_options[key]): <{width_value}}=='] # visible_options key/value pairs
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
summary_text += [f'=={" "*width_total}==']
if len(self.device_config.devices) == 0:
summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
for device in self.device_config.devices:
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"="*width_total}==']
summary_text = "\n".join (summary_text)
return summary_text
@staticmethod
def get_loss_history_preview(loss_history, iter, w, c):
loss_history = np.array (loss_history.copy())
lh_height = 100
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
if len(loss_history) != 0:
loss_count = len(loss_history[0])
lh_len = len(loss_history)
l_per_col = lh_len / w
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2
for col in range(0, w):
for p in range(0,loss_count):
point_color = [1.0]*c
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
ph_max = np.clip( ph_max, 0, lh_height-1 )
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
ph_min = np.clip( ph_min, 0, lh_height-1 )
for ph in range(ph_min, ph_max+1):
lh_img[ (lh_height-ph-1), col ] = point_color
lh_lines = 5
lh_line_height = (lh_height-1)/lh_lines
for i in range(0,lh_lines+1):
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c
last_line_t = int((lh_lines-1)*lh_line_height)
last_line_b = int(lh_lines*lh_line_height)
lh_text = 'Iter: %d' % (iter) if iter != 0 else ''
lh_img[last_line_t:last_line_b, 0:w] += imagelib.get_text_image ( (last_line_b-last_line_t,w,c), lh_text, color=[0.8]*c )
return lh_img
class PreviewHistoryWriter():
def __init__(self):
self.sq = multiprocessing.Queue()
self.p = multiprocessing.Process(target=self.process, args=( self.sq, ))
self.p.daemon = True
self.p.start()
def process(self, sq):
while True:
while not sq.empty():
plist, loss_history, iter = sq.get()
preview_lh_cache = {}
for preview, filepath in plist:
filepath = Path(filepath)
i = (preview.shape[1], preview.shape[2])
preview_lh = preview_lh_cache.get(i, None)
if preview_lh is None:
preview_lh = ModelBase.get_loss_history_preview(loss_history, iter, preview.shape[1], preview.shape[2])
preview_lh_cache[i] = preview_lh
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
filepath.parent.mkdir(parents=True, exist_ok=True)
cv2_imwrite (filepath, img )
time.sleep(0.01)
def post(self, plist, loss_history, iter):
self.sq.put ( (plist, loss_history, iter) )
# disable pickling
def __getstate__(self):
return dict()
def __setstate__(self, d):
self.__dict__.update(d)
|