File size: 29,741 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import colorsys
import inspect
import json
import multiprocessing
import operator
import os
import pickle
import shutil
import tempfile
import time
from pathlib import Path

import cv2
import numpy as np

from core import imagelib, pathex
from core.cv2ex import *
from core.interact import interact as io
from core.leras import nn
from samplelib import SampleGeneratorBase


class ModelBase(object):
    def __init__(self, is_training=False,
                       is_exporting=False,
                       saved_models_path=None,
                       training_data_src_path=None,
                       training_data_dst_path=None,
                       pretraining_data_path=None,
                       pretrained_model_path=None,
                       no_preview=False,
                       force_model_name=None,
                       force_gpu_idxs=None,
                       cpu_only=False,
                       debug=False,
                       force_model_class_name=None,
                       silent_start=False,
                       **kwargs):
        self.is_training = is_training
        self.is_exporting = is_exporting
        self.saved_models_path = saved_models_path
        self.training_data_src_path = training_data_src_path
        self.training_data_dst_path = training_data_dst_path
        self.pretraining_data_path = pretraining_data_path
        self.pretrained_model_path = pretrained_model_path
        self.no_preview = no_preview
        self.debug = debug

        self.model_class_name = model_class_name = Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]

        if force_model_class_name is None:
            if force_model_name is not None:
                self.model_name = force_model_name
            else:
                while True:
                    # gather all model dat files
                    saved_models_names = []
                    for filepath in pathex.get_file_paths(saved_models_path):
                        filepath_name = filepath.name
                        if filepath_name.endswith(f'{model_class_name}_data.dat'):
                            saved_models_names += [ (filepath_name.split('_')[0], os.path.getmtime(filepath)) ]

                    # sort by modified datetime
                    saved_models_names = sorted(saved_models_names, key=operator.itemgetter(1), reverse=True )
                    saved_models_names = [ x[0] for x in saved_models_names ]


                    if len(saved_models_names) != 0:
                        if silent_start:
                            self.model_name = saved_models_names[0]
                            io.log_info(f'Silent start: choosed model "{self.model_name}"')
                        else:
                            io.log_info ("Choose one of saved models, or enter a name to create a new model.")
                            io.log_info ("[r] : rename")
                            io.log_info ("[d] : delete")
                            io.log_info ("")
                            for i, model_name in enumerate(saved_models_names):
                                s = f"[{i}] : {model_name} "
                                if i == 0:
                                    s += "- latest"
                                io.log_info (s)

                            inp = io.input_str(f"", "0", show_default_value=False )
                            model_idx = -1
                            try:
                                model_idx = np.clip ( int(inp), 0, len(saved_models_names)-1 )
                            except:
                                pass

                            if model_idx == -1:
                                if len(inp) == 1:
                                    is_rename = inp[0] == 'r'
                                    is_delete = inp[0] == 'd'

                                    if is_rename or is_delete:
                                        if len(saved_models_names) != 0:

                                            if is_rename:
                                                name = io.input_str(f"Enter the name of the model you want to rename")
                                            elif is_delete:
                                                name = io.input_str(f"Enter the name of the model you want to delete")

                                            if name in saved_models_names:

                                                if is_rename:
                                                    new_model_name = io.input_str(f"Enter new name of the model")

                                                for filepath in pathex.get_paths(saved_models_path):
                                                    filepath_name = filepath.name

                                                    model_filename, remain_filename = filepath_name.split('_', 1)
                                                    if model_filename == name:

                                                        if is_rename:
                                                            new_filepath = filepath.parent / ( new_model_name + '_' + remain_filename )
                                                            filepath.rename (new_filepath)
                                                        elif is_delete:
                                                            filepath.unlink()
                                        continue

                                self.model_name = inp
                            else:
                                self.model_name = saved_models_names[model_idx]

                    else:
                        self.model_name = io.input_str(f"No saved models found. Enter a name of a new model", "new")
                        self.model_name = self.model_name.replace('_', ' ')
                    break


            self.model_name = self.model_name + '_' + self.model_class_name
        else:
            self.model_name = force_model_class_name

        self.iter = 0
        self.options = {}
        self.options_show_override = {}
        self.loss_history = []
        self.sample_for_preview = None
        self.choosed_gpu_indexes = None

        model_data = {}
        self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
        if self.model_data_path.exists():
            io.log_info (f"Loading {self.model_name} model...")
            model_data = pickle.loads ( self.model_data_path.read_bytes() )
            self.iter = model_data.get('iter',0)
            if self.iter != 0:
                self.options = model_data['options']
                self.loss_history = model_data.get('loss_history', [])
                self.sample_for_preview = model_data.get('sample_for_preview', None)
                self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None)

        if self.is_first_run():
            io.log_info ("\nModel first run.")

        if silent_start:
            self.device_config = nn.DeviceConfig.BestGPU()
            io.log_info (f"Silent start: choosed device {'CPU' if self.device_config.cpu_only else self.device_config.devices[0].name}")
        else:
            self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \
                                if not cpu_only else nn.DeviceConfig.CPU()

        nn.initialize(self.device_config)

        ####
        self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat'
        self.default_options = {}
        if self.default_options_path.exists():
            try:
                self.default_options = pickle.loads ( self.default_options_path.read_bytes() )
            except:
                pass

        self.choose_preview_history = False
        self.batch_size = self.load_or_def_option('batch_size', 1)
        #####

        io.input_skip_pending()
        self.on_initialize_options()

        if self.is_first_run():
            # save as default options only for first run model initialize
            self.default_options_path.write_bytes( pickle.dumps (self.options) )

        self.autobackup_hour = self.options.get('autobackup_hour', 0)
        self.write_preview_history = self.options.get('write_preview_history', False)
        self.target_iter = self.options.get('target_iter',0)
        self.random_flip = self.options.get('random_flip',True)
        self.random_src_flip = self.options.get('random_src_flip', False)
        self.random_dst_flip = self.options.get('random_dst_flip', True)
        
        self.on_initialize()
        self.options['batch_size'] = self.batch_size

        self.preview_history_writer = None
        if self.is_training:
            self.preview_history_path = self.saved_models_path / ( f'{self.get_model_name()}_history' )
            self.autobackups_path     = self.saved_models_path / ( f'{self.get_model_name()}_autobackups' )

            if self.write_preview_history or io.is_colab():
                if not self.preview_history_path.exists():
                    self.preview_history_path.mkdir(exist_ok=True)
                else:
                    if self.iter == 0:
                        for filename in pathex.get_image_paths(self.preview_history_path):
                            Path(filename).unlink()

            if self.generator_list is None:
                raise ValueError( 'You didnt set_training_data_generators()')
            else:
                for i, generator in enumerate(self.generator_list):
                    if not isinstance(generator, SampleGeneratorBase):
                        raise ValueError('training data generator is not subclass of SampleGeneratorBase')

            self.update_sample_for_preview(choose_preview_history=self.choose_preview_history)

            if self.autobackup_hour != 0:
                self.autobackup_start_time = time.time()

                if not self.autobackups_path.exists():
                    self.autobackups_path.mkdir(exist_ok=True)

        io.log_info( self.get_summary_text() )

    def update_sample_for_preview(self, choose_preview_history=False, force_new=False):
        if self.sample_for_preview is None or choose_preview_history or force_new:
            if choose_preview_history and io.is_support_windows():
                wnd_name = "[p] - next. [space] - switch preview type. [enter] - confirm."
                io.log_info (f"Choose image for the preview history. {wnd_name}")
                io.named_window(wnd_name)
                io.capture_keys(wnd_name)
                choosed = False
                preview_id_counter = 0
                while not choosed:
                    self.sample_for_preview = self.generate_next_samples()
                    previews = self.get_history_previews()

                    io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )

                    while True:
                        key_events = io.get_key_events(wnd_name)
                        key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
                        if key == ord('\n') or key == ord('\r'):
                            choosed = True
                            break
                        elif key == ord(' '):
                            preview_id_counter += 1
                            break
                        elif key == ord('p'):
                            break

                        try:
                            io.process_messages(0.1)
                        except KeyboardInterrupt:
                            choosed = True

                io.destroy_window(wnd_name)
            else:
                self.sample_for_preview = self.generate_next_samples()

        try:
            self.get_history_previews()
        except:
            self.sample_for_preview = self.generate_next_samples()

        self.last_sample = self.sample_for_preview

    def load_or_def_option(self, name, def_value):
        options_val = self.options.get(name, None)
        if options_val is not None:
            return options_val

        def_opt_val = self.default_options.get(name, None)
        if def_opt_val is not None:
            return def_opt_val

        return def_value

    def ask_override(self):
        return self.is_training and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )

    def ask_autobackup_hour(self, default_value=0):
        default_autobackup_hour = self.options['autobackup_hour'] = self.load_or_def_option('autobackup_hour', default_value)
        self.options['autobackup_hour'] = io.input_int(f"Autobackup every N hour", default_autobackup_hour, add_info="0..24", help_message="Autobackup model files with preview every N hour. Latest backup located in model/<>_autobackups/01")

    def ask_write_preview_history(self, default_value=False):
        default_write_preview_history = self.load_or_def_option('write_preview_history', default_value)
        self.options['write_preview_history'] = io.input_bool(f"Write preview history", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")

        if self.options['write_preview_history']:
            if io.is_support_windows():
                self.choose_preview_history = io.input_bool("Choose image for the preview history", False)
            elif io.is_colab():
                self.choose_preview_history = io.input_bool("Randomly choose new image for preview history", False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")

    def ask_target_iter(self, default_value=0):
        default_target_iter = self.load_or_def_option('target_iter', default_value)
        self.options['target_iter'] = max(0, io.input_int("Target iteration", default_target_iter))

    def ask_random_flip(self):
        default_random_flip = self.load_or_def_option('random_flip', True)
        self.options['random_flip'] = io.input_bool("Flip faces randomly", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
    
    def ask_random_src_flip(self):
        default_random_src_flip = self.load_or_def_option('random_src_flip', False)
        self.options['random_src_flip'] = io.input_bool("Flip SRC faces randomly", default_random_src_flip, help_message="Random horizontal flip SRC faceset. Covers more angles, but the face may look less naturally.")

    def ask_random_dst_flip(self):
        default_random_dst_flip = self.load_or_def_option('random_dst_flip', True)
        self.options['random_dst_flip'] = io.input_bool("Flip DST faces randomly", default_random_dst_flip, help_message="Random horizontal flip DST faceset. Makes generalization of src->dst better, if src random flip is not enabled.")

    def ask_batch_size(self, suggest_batch_size=None, range=None):
        default_batch_size = self.load_or_def_option('batch_size', suggest_batch_size or self.batch_size)

        batch_size = max(0, io.input_int("Batch_size", default_batch_size, valid_range=range, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))

        if range is not None:
            batch_size = np.clip(batch_size, range[0], range[1])

        self.options['batch_size'] = self.batch_size = batch_size


    #overridable
    def on_initialize_options(self):
        pass

    #overridable
    def on_initialize(self):
        '''
        initialize your models

        store and retrieve your model options in self.options['']

        check example
        '''
        pass

    #overridable
    def onSave(self):
        #save your models here
        pass

    #overridable
    def onTrainOneIter(self, sample, generator_list):
        #train your models here

        #return array of losses
        return ( ('loss_src', 0), ('loss_dst', 0) )

    #overridable
    def onGetPreview(self, sample, for_history=False):
        #you can return multiple previews
        #return [ ('preview_name',preview_rgb), ... ]
        return []

    #overridable if you want model name differs from folder name
    def get_model_name(self):
        return self.model_name

    #overridable , return [ [model, filename],... ]  list
    def get_model_filename_list(self):
        return []

    #overridable
    def get_MergerConfig(self):
        #return predictor_func, predictor_input_shape, MergerConfig() for the model
        raise NotImplementedError

    def get_pretraining_data_path(self):
        return self.pretraining_data_path

    def get_target_iter(self):
        return self.target_iter

    def is_reached_iter_goal(self):
        return self.target_iter != 0 and self.iter >= self.target_iter

    def get_previews(self):
        return self.onGetPreview ( self.last_sample )

    def get_history_previews(self):
        return self.onGetPreview (self.sample_for_preview, for_history=True)

    def get_preview_history_writer(self):
        if self.preview_history_writer is None:
            self.preview_history_writer = PreviewHistoryWriter()
        return self.preview_history_writer

    def save(self):
        Path( self.get_summary_path() ).write_text( self.get_summary_text() )

        self.onSave()

        model_data = {
            'iter': self.iter,
            'options': self.options,
            'loss_history': self.loss_history,
            'sample_for_preview' : self.sample_for_preview,
            'choosed_gpu_indexes' : self.choosed_gpu_indexes,
        }
        pathex.write_bytes_safe (self.model_data_path, pickle.dumps(model_data) )

        if self.autobackup_hour != 0:
            diff_hour = int ( (time.time() - self.autobackup_start_time) // 3600 )

            if diff_hour > 0 and diff_hour % self.autobackup_hour == 0:
                self.autobackup_start_time += self.autobackup_hour*3600
                self.create_backup()

    def create_backup(self):
        io.log_info ("Creating backup...", end='\r')

        if not self.autobackups_path.exists():
            self.autobackups_path.mkdir(exist_ok=True)

        bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
        bckp_filename_list += [ str(self.get_summary_path()), str(self.model_data_path) ]

        for i in range(24,0,-1):
            idx_str = '%.2d' % i
            next_idx_str = '%.2d' % (i+1)

            idx_backup_path = self.autobackups_path / idx_str
            next_idx_packup_path = self.autobackups_path / next_idx_str

            if idx_backup_path.exists():
                if i == 24:
                    pathex.delete_all_files(idx_backup_path)
                else:
                    next_idx_packup_path.mkdir(exist_ok=True)
                    pathex.move_all_files (idx_backup_path, next_idx_packup_path)

            if i == 1:
                idx_backup_path.mkdir(exist_ok=True)
                for filename in bckp_filename_list:
                    shutil.copy ( str(filename), str(idx_backup_path / Path(filename).name) )

                previews = self.get_previews()
                plist = []
                for i in range(len(previews)):
                    name, bgr = previews[i]
                    plist += [ (bgr, idx_backup_path / ( ('preview_%s.jpg') % (name))  )  ]

                if len(plist) != 0:
                    self.get_preview_history_writer().post(plist, self.loss_history, self.iter)

    def debug_one_iter(self):
        images = []
        for generator in self.generator_list:
            for i,batch in enumerate(next(generator)):
                if len(batch.shape) == 4:
                    images.append( batch[0] )

        return imagelib.equalize_and_stack_square (images)

    def generate_next_samples(self):
        sample = []
        for generator in self.generator_list:
            if generator.is_initialized():
                sample.append ( generator.generate_next() )
            else:
                sample.append ( [] )
        self.last_sample = sample
        return sample

    #overridable
    def should_save_preview_history(self):
        return (not io.is_colab() and self.iter % 10 == 0) or (io.is_colab() and self.iter % 100 == 0)

    def train_one_iter(self):

        iter_time = time.time()
        losses = self.onTrainOneIter()
        iter_time = time.time() - iter_time

        self.loss_history.append ( [float(loss[1]) for loss in losses] )

        if self.should_save_preview_history():
            plist = []

            if io.is_colab():
                previews = self.get_previews()
                for i in range(len(previews)):
                    name, bgr = previews[i]
                    plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]

            if self.write_preview_history:
                previews = self.get_history_previews()
                for i in range(len(previews)):
                    name, bgr = previews[i]
                    path = self.preview_history_path / name
                    plist += [ ( bgr, str ( path / ( f'{self.iter:07d}.jpg') ) ) ]
                    if not io.is_colab():
                        plist += [ ( bgr, str ( path / ( '_last.jpg' ) )) ]

            if len(plist) != 0:
                self.get_preview_history_writer().post(plist, self.loss_history, self.iter)

        self.iter += 1

        return self.iter, iter_time

    def pass_one_iter(self):
        self.generate_next_samples()

    def finalize(self):
        nn.close_session()

    def is_first_run(self):
        return self.iter == 0

    def is_debug(self):
        return self.debug

    def set_batch_size(self, batch_size):
        self.batch_size = batch_size

    def get_batch_size(self):
        return self.batch_size

    def get_iter(self):
        return self.iter

    def set_iter(self, iter):
        self.iter = iter
        self.loss_history = self.loss_history[:iter]

    def get_loss_history(self):
        return self.loss_history

    def set_training_data_generators (self, generator_list):
        self.generator_list = generator_list

    def get_training_data_generators (self):
        return self.generator_list

    def get_model_root_path(self):
        return self.saved_models_path

    def get_strpath_storage_for_file(self, filename):
        return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )

    def get_summary_path(self):
        return self.get_strpath_storage_for_file('summary.txt')

    def get_summary_text(self):
        visible_options = self.options.copy()
        visible_options.update(self.options_show_override)
        
        ###Generate text summary of model hyperparameters
        #Find the longest key name and value string. Used as column widths.
        width_name = max([len(k) for k in visible_options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
        width_value = max([len(str(x)) for x in visible_options.values()] + [len(str(self.get_iter())), len(self.get_model_name())]) + 1 # Single space buffer to right edge
        if len(self.device_config.devices) != 0: #Check length of GPU names
            width_value = max([len(device.name)+1 for device in self.device_config.devices] + [width_value])
        width_total = width_name + width_value + 2 #Plus 2 for ": "

        summary_text = []
        summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
        summary_text += [f'=={" "*width_total}==']
        summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
        summary_text += [f'=={" "*width_total}==']
        summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.get_iter()): <{width_value}}=='] # Iter
        summary_text += [f'=={" "*width_total}==']

        summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
        summary_text += [f'=={" "*width_total}==']
        for key in visible_options.keys():
            summary_text += [f'=={key: >{width_name}}: {str(visible_options[key]): <{width_value}}=='] # visible_options key/value pairs
        summary_text += [f'=={" "*width_total}==']

        summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
        summary_text += [f'=={" "*width_total}==']
        if len(self.device_config.devices) == 0:
            summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
        else:
            for device in self.device_config.devices:
                summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
                summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
                vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
                summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
        summary_text += [f'=={" "*width_total}==']
        summary_text += [f'=={"="*width_total}==']
        summary_text = "\n".join (summary_text)
        return summary_text

    @staticmethod
    def get_loss_history_preview(loss_history, iter, w, c):
        loss_history = np.array (loss_history.copy())

        lh_height = 100
        lh_img = np.ones ( (lh_height,w,c) ) * 0.1

        if len(loss_history) != 0:
            loss_count = len(loss_history[0])
            lh_len = len(loss_history)

            l_per_col = lh_len / w
            plist_max = [   [   max (0.0, loss_history[int(col*l_per_col)][p],
                                                *[  loss_history[i_ab][p]
                                                    for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
                                                ]
                                    )
                                for p in range(loss_count)
                            ]
                            for col in range(w)
                        ]

            plist_min = [   [   min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
                                                *[  loss_history[i_ab][p]
                                                    for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
                                                ]
                                    )
                                for p in range(loss_count)
                            ]
                            for col in range(w)
                        ]

            plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2

            for col in range(0, w):
                for p in range(0,loss_count):
                    point_color = [1.0]*c
                    point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )

                    ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
                    ph_max = np.clip( ph_max, 0, lh_height-1 )

                    ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
                    ph_min = np.clip( ph_min, 0, lh_height-1 )

                    for ph in range(ph_min, ph_max+1):
                        lh_img[ (lh_height-ph-1), col ] = point_color

        lh_lines = 5
        lh_line_height = (lh_height-1)/lh_lines
        for i in range(0,lh_lines+1):
            lh_img[ int(i*lh_line_height), : ] = (0.8,)*c

        last_line_t = int((lh_lines-1)*lh_line_height)
        last_line_b = int(lh_lines*lh_line_height)

        lh_text = 'Iter: %d' % (iter) if iter != 0 else ''

        lh_img[last_line_t:last_line_b, 0:w] += imagelib.get_text_image (  (last_line_b-last_line_t,w,c), lh_text, color=[0.8]*c )
        return lh_img

class PreviewHistoryWriter():
    def __init__(self):
        self.sq = multiprocessing.Queue()
        self.p = multiprocessing.Process(target=self.process, args=( self.sq, ))
        self.p.daemon = True
        self.p.start()

    def process(self, sq):
        while True:
            while not sq.empty():
                plist, loss_history, iter = sq.get()

                preview_lh_cache = {}
                for preview, filepath in plist:
                    filepath = Path(filepath)
                    i = (preview.shape[1], preview.shape[2])

                    preview_lh = preview_lh_cache.get(i, None)
                    if preview_lh is None:
                        preview_lh = ModelBase.get_loss_history_preview(loss_history, iter, preview.shape[1], preview.shape[2])
                        preview_lh_cache[i] = preview_lh

                    img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)

                    filepath.parent.mkdir(parents=True, exist_ok=True)
                    cv2_imwrite (filepath, img )

            time.sleep(0.01)

    def post(self, plist, loss_history, iter):
        self.sq.put ( (plist, loss_history, iter) )

    # disable pickling
    def __getstate__(self):
        return dict()
    def __setstate__(self, d):
        self.__dict__.update(d)