|
import pickle |
|
from pathlib import Path |
|
|
|
import cv2 |
|
|
|
from DFLIMG import * |
|
from facelib import LandmarksProcessor, FaceType |
|
from core.interact import interact as io |
|
from core import pathex |
|
from core.cv2ex import * |
|
|
|
|
|
def save_faceset_metadata_folder(input_path): |
|
input_path = Path(input_path) |
|
|
|
metadata_filepath = input_path / 'meta.dat' |
|
|
|
io.log_info (f"Saving metadata to {str(metadata_filepath)}\r\n") |
|
|
|
d = {} |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"): |
|
filepath = Path(filepath) |
|
dflimg = DFLIMG.load (filepath) |
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_info(f"{filepath} is not a dfl image file") |
|
continue |
|
|
|
dfl_dict = dflimg.get_dict() |
|
d[filepath.name] = ( dflimg.get_shape(), dfl_dict ) |
|
|
|
try: |
|
with open(metadata_filepath, "wb") as f: |
|
f.write ( pickle.dumps(d) ) |
|
except: |
|
raise Exception( 'cannot save %s' % (filename) ) |
|
|
|
io.log_info("Now you can edit images.") |
|
io.log_info("!!! Keep same filenames in the folder.") |
|
io.log_info("You can change size of images, restoring process will downscale back to original size.") |
|
io.log_info("After that, use restore metadata.") |
|
|
|
def restore_faceset_metadata_folder(input_path): |
|
input_path = Path(input_path) |
|
|
|
metadata_filepath = input_path / 'meta.dat' |
|
io.log_info (f"Restoring metadata from {str(metadata_filepath)}.\r\n") |
|
|
|
if not metadata_filepath.exists(): |
|
io.log_err(f"Unable to find {str(metadata_filepath)}.") |
|
|
|
try: |
|
with open(metadata_filepath, "rb") as f: |
|
d = pickle.loads(f.read()) |
|
except: |
|
raise FileNotFoundError(filename) |
|
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path, image_extensions=['.jpg'], return_Path_class=True), "Processing"): |
|
saved_data = d.get(filepath.name, None) |
|
if saved_data is None: |
|
io.log_info(f"No saved metadata for {filepath}") |
|
continue |
|
|
|
shape, dfl_dict = saved_data |
|
|
|
img = cv2_imread (filepath) |
|
if img.shape != shape: |
|
img = cv2.resize (img, (shape[1], shape[0]), interpolation=cv2.INTER_LANCZOS4 ) |
|
|
|
cv2_imwrite (str(filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] ) |
|
|
|
if filepath.suffix == '.jpg': |
|
dflimg = DFLJPG.load(filepath) |
|
dflimg.set_dict(dfl_dict) |
|
dflimg.save() |
|
else: |
|
continue |
|
|
|
metadata_filepath.unlink() |
|
|
|
def add_landmarks_debug_images(input_path): |
|
io.log_info ("Adding landmarks debug images...") |
|
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"): |
|
filepath = Path(filepath) |
|
|
|
img = cv2_imread(str(filepath)) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
continue |
|
|
|
if img is not None: |
|
face_landmarks = dflimg.get_landmarks() |
|
face_type = FaceType.fromString ( dflimg.get_face_type() ) |
|
|
|
if face_type == FaceType.MARK_ONLY: |
|
rect = dflimg.get_source_rect() |
|
LandmarksProcessor.draw_rect_landmarks(img, rect, face_landmarks, FaceType.FULL ) |
|
else: |
|
LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True ) |
|
|
|
|
|
|
|
output_file = '{}{}'.format( str(Path(str(input_path)) / filepath.stem), '_debug.jpg') |
|
cv2_imwrite(output_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50] ) |
|
|
|
def recover_original_aligned_filename(input_path): |
|
io.log_info ("Recovering original aligned filename...") |
|
|
|
files = [] |
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"): |
|
filepath = Path(filepath) |
|
|
|
dflimg = DFLIMG.load (filepath) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
io.log_err (f"{filepath.name} is not a dfl image file") |
|
continue |
|
|
|
files += [ [filepath, None, dflimg.get_source_filename(), False] ] |
|
|
|
files_len = len(files) |
|
for i in io.progress_bar_generator( range(files_len), "Sorting" ): |
|
fp, _, sf, converted = files[i] |
|
|
|
if converted: |
|
continue |
|
|
|
sf_stem = Path(sf).stem |
|
|
|
files[i][1] = fp.parent / ( sf_stem + '_0' + fp.suffix ) |
|
files[i][3] = True |
|
c = 1 |
|
|
|
for j in range(i+1, files_len): |
|
fp_j, _, sf_j, converted_j = files[j] |
|
if converted_j: |
|
continue |
|
|
|
if sf_j == sf: |
|
files[j][1] = fp_j.parent / ( sf_stem + ('_%d' % (c)) + fp_j.suffix ) |
|
files[j][3] = True |
|
c += 1 |
|
|
|
for file in io.progress_bar_generator( files, "Renaming", leave=False ): |
|
fs, _, _, _ = file |
|
dst = fs.parent / ( fs.stem + '_tmp' + fs.suffix ) |
|
try: |
|
fs.rename (dst) |
|
except: |
|
io.log_err ('fail to rename %s' % (fs.name) ) |
|
|
|
for file in io.progress_bar_generator( files, "Renaming" ): |
|
fs, fd, _, _ = file |
|
fs = fs.parent / ( fs.stem + '_tmp' + fs.suffix ) |
|
try: |
|
fs.rename (fd) |
|
except: |
|
io.log_err ('fail to rename %s' % (fs.name) ) |
|
|