File size: 5,411 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import pickle
from pathlib import Path
import cv2
from DFLIMG import *
from facelib import LandmarksProcessor, FaceType
from core.interact import interact as io
from core import pathex
from core.cv2ex import *
def save_faceset_metadata_folder(input_path):
input_path = Path(input_path)
metadata_filepath = input_path / 'meta.dat'
io.log_info (f"Saving metadata to {str(metadata_filepath)}\r\n")
d = {}
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_info(f"{filepath} is not a dfl image file")
continue
dfl_dict = dflimg.get_dict()
d[filepath.name] = ( dflimg.get_shape(), dfl_dict )
try:
with open(metadata_filepath, "wb") as f:
f.write ( pickle.dumps(d) )
except:
raise Exception( 'cannot save %s' % (filename) )
io.log_info("Now you can edit images.")
io.log_info("!!! Keep same filenames in the folder.")
io.log_info("You can change size of images, restoring process will downscale back to original size.")
io.log_info("After that, use restore metadata.")
def restore_faceset_metadata_folder(input_path):
input_path = Path(input_path)
metadata_filepath = input_path / 'meta.dat'
io.log_info (f"Restoring metadata from {str(metadata_filepath)}.\r\n")
if not metadata_filepath.exists():
io.log_err(f"Unable to find {str(metadata_filepath)}.")
try:
with open(metadata_filepath, "rb") as f:
d = pickle.loads(f.read())
except:
raise FileNotFoundError(filename)
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path, image_extensions=['.jpg'], return_Path_class=True), "Processing"):
saved_data = d.get(filepath.name, None)
if saved_data is None:
io.log_info(f"No saved metadata for {filepath}")
continue
shape, dfl_dict = saved_data
img = cv2_imread (filepath)
if img.shape != shape:
img = cv2.resize (img, (shape[1], shape[0]), interpolation=cv2.INTER_LANCZOS4 )
cv2_imwrite (str(filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
if filepath.suffix == '.jpg':
dflimg = DFLJPG.load(filepath)
dflimg.set_dict(dfl_dict)
dflimg.save()
else:
continue
metadata_filepath.unlink()
def add_landmarks_debug_images(input_path):
io.log_info ("Adding landmarks debug images...")
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
filepath = Path(filepath)
img = cv2_imread(str(filepath))
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
continue
if img is not None:
face_landmarks = dflimg.get_landmarks()
face_type = FaceType.fromString ( dflimg.get_face_type() )
if face_type == FaceType.MARK_ONLY:
rect = dflimg.get_source_rect()
LandmarksProcessor.draw_rect_landmarks(img, rect, face_landmarks, FaceType.FULL )
else:
LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True )
output_file = '{}{}'.format( str(Path(str(input_path)) / filepath.stem), '_debug.jpg')
cv2_imwrite(output_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
def recover_original_aligned_filename(input_path):
io.log_info ("Recovering original aligned filename...")
files = []
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
filepath = Path(filepath)
dflimg = DFLIMG.load (filepath)
if dflimg is None or not dflimg.has_data():
io.log_err (f"{filepath.name} is not a dfl image file")
continue
files += [ [filepath, None, dflimg.get_source_filename(), False] ]
files_len = len(files)
for i in io.progress_bar_generator( range(files_len), "Sorting" ):
fp, _, sf, converted = files[i]
if converted:
continue
sf_stem = Path(sf).stem
files[i][1] = fp.parent / ( sf_stem + '_0' + fp.suffix )
files[i][3] = True
c = 1
for j in range(i+1, files_len):
fp_j, _, sf_j, converted_j = files[j]
if converted_j:
continue
if sf_j == sf:
files[j][1] = fp_j.parent / ( sf_stem + ('_%d' % (c)) + fp_j.suffix )
files[j][3] = True
c += 1
for file in io.progress_bar_generator( files, "Renaming", leave=False ):
fs, _, _, _ = file
dst = fs.parent / ( fs.stem + '_tmp' + fs.suffix )
try:
fs.rename (dst)
except:
io.log_err ('fail to rename %s' % (fs.name) )
for file in io.progress_bar_generator( files, "Renaming" ):
fs, fd, _, _ = file
fs = fs.parent / ( fs.stem + '_tmp' + fs.suffix )
try:
fs.rename (fd)
except:
io.log_err ('fail to rename %s' % (fs.name) )
|