|
import multiprocessing |
|
import shutil |
|
|
|
from DFLIMG import * |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor |
|
from core.leras import nn |
|
from core import pathex |
|
from core.cv2ex import * |
|
|
|
|
|
class FacesetEnhancerSubprocessor(Subprocessor): |
|
|
|
|
|
def __init__(self, image_paths, output_dirpath, device_config): |
|
self.image_paths = image_paths |
|
self.output_dirpath = output_dirpath |
|
self.result = [] |
|
self.nn_initialize_mp_lock = multiprocessing.Lock() |
|
self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(device_config) |
|
|
|
super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar (None, len (self.image_paths)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def process_info_generator(self): |
|
base_dict = {'output_dirpath':self.output_dirpath, |
|
'nn_initialize_mp_lock': self.nn_initialize_mp_lock,} |
|
|
|
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices: |
|
client_dict = base_dict.copy() |
|
client_dict['device_idx'] = device_idx |
|
client_dict['device_name'] = device_name |
|
client_dict['device_type'] = device_type |
|
yield client_dict['device_name'], {}, client_dict |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.image_paths) > 0: |
|
return self.image_paths.pop(0) |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.image_paths.insert(0, data) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
io.progress_bar_inc(1) |
|
if result[0] == 1: |
|
self.result +=[ (result[1], result[2]) ] |
|
|
|
|
|
def get_result(self): |
|
return self.result |
|
|
|
@staticmethod |
|
def get_devices_for_config (device_config): |
|
devices = device_config.devices |
|
cpu_only = len(devices) == 0 |
|
|
|
if not cpu_only: |
|
return [ (device.index, 'GPU', device.name, device.total_mem_gb) for device in devices ] |
|
else: |
|
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ] |
|
|
|
class Cli(Subprocessor.Cli): |
|
|
|
|
|
def on_initialize(self, client_dict): |
|
device_idx = client_dict['device_idx'] |
|
cpu_only = client_dict['device_type'] == 'CPU' |
|
self.output_dirpath = client_dict['output_dirpath'] |
|
nn_initialize_mp_lock = client_dict['nn_initialize_mp_lock'] |
|
|
|
if cpu_only: |
|
device_config = nn.DeviceConfig.CPU() |
|
device_vram = 99 |
|
else: |
|
device_config = nn.DeviceConfig.GPUIndexes ([device_idx]) |
|
device_vram = device_config.devices[0].total_mem_gb |
|
|
|
nn.initialize (device_config) |
|
|
|
intro_str = 'Running on %s.' % (client_dict['device_name']) |
|
|
|
self.log_info (intro_str) |
|
|
|
from facelib import FaceEnhancer |
|
self.fe = FaceEnhancer( place_model_on_cpu=(device_vram<=2 or cpu_only), run_on_cpu=cpu_only ) |
|
|
|
|
|
def process_data(self, filepath): |
|
try: |
|
dflimg = DFLIMG.load (filepath) |
|
if dflimg is None or not dflimg.has_data(): |
|
self.log_err (f"{filepath.name} is not a dfl image file") |
|
else: |
|
dfl_dict = dflimg.get_dict() |
|
|
|
img = cv2_imread(filepath).astype(np.float32) / 255.0 |
|
img = self.fe.enhance(img) |
|
img = np.clip (img*255, 0, 255).astype(np.uint8) |
|
|
|
output_filepath = self.output_dirpath / filepath.name |
|
|
|
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] ) |
|
|
|
dflimg = DFLIMG.load (output_filepath) |
|
dflimg.set_dict(dfl_dict) |
|
dflimg.save() |
|
|
|
return (1, filepath, output_filepath) |
|
except: |
|
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}") |
|
|
|
return (0, filepath, None) |
|
|
|
def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ): |
|
device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_all_gpu=True) ) \ |
|
if not cpu_only else nn.DeviceConfig.CPU() |
|
|
|
output_dirpath = dirpath.parent / (dirpath.name + '_enhanced') |
|
output_dirpath.mkdir (exist_ok=True, parents=True) |
|
|
|
dirpath_parts = '/'.join( dirpath.parts[-2:]) |
|
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] ) |
|
io.log_info (f"Enhancing faceset in {dirpath_parts}") |
|
io.log_info ( f"Processing to {output_dirpath_parts}") |
|
|
|
output_images_paths = pathex.get_image_paths(output_dirpath) |
|
if len(output_images_paths) > 0: |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
|
|
image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )] |
|
result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, device_config=device_config).run() |
|
|
|
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True) |
|
if is_merge: |
|
io.log_info (f"Copying processed files to {dirpath_parts}") |
|
|
|
for (filepath, output_filepath) in result: |
|
try: |
|
shutil.copy (output_filepath, filepath) |
|
except: |
|
pass |
|
|
|
io.log_info (f"Removing {output_dirpath_parts}") |
|
shutil.rmtree(output_dirpath) |
|
|