File size: 5,720 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import multiprocessing
import shutil

from DFLIMG import *
from core.interact import interact as io
from core.joblib import Subprocessor
from core.leras import nn
from core import pathex
from core.cv2ex import *


class FacesetEnhancerSubprocessor(Subprocessor):

    #override
    def __init__(self, image_paths, output_dirpath, device_config):
        self.image_paths = image_paths
        self.output_dirpath = output_dirpath
        self.result = []
        self.nn_initialize_mp_lock = multiprocessing.Lock()
        self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(device_config)

        super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)

    #override
    def on_clients_initialized(self):
        io.progress_bar (None, len (self.image_paths))

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def process_info_generator(self):
        base_dict = {'output_dirpath':self.output_dirpath,
                     'nn_initialize_mp_lock': self.nn_initialize_mp_lock,}

        for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
            client_dict = base_dict.copy()
            client_dict['device_idx'] = device_idx
            client_dict['device_name'] = device_name
            client_dict['device_type'] = device_type
            yield client_dict['device_name'], {}, client_dict

    #override
    def get_data(self, host_dict):
        if len (self.image_paths) > 0:
            return self.image_paths.pop(0)

    #override
    def on_data_return (self, host_dict, data):
        self.image_paths.insert(0, data)

    #override
    def on_result (self, host_dict, data, result):
        io.progress_bar_inc(1)
        if result[0] == 1:
            self.result +=[ (result[1], result[2]) ]

    #override
    def get_result(self):
        return self.result

    @staticmethod
    def get_devices_for_config (device_config):
        devices = device_config.devices
        cpu_only = len(devices) == 0

        if not cpu_only:
            return [ (device.index, 'GPU', device.name, device.total_mem_gb) for device in devices ]
        else:
            return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]

    class Cli(Subprocessor.Cli):

        #override
        def on_initialize(self, client_dict):
            device_idx   = client_dict['device_idx']
            cpu_only     = client_dict['device_type'] == 'CPU'
            self.output_dirpath = client_dict['output_dirpath']
            nn_initialize_mp_lock = client_dict['nn_initialize_mp_lock']

            if cpu_only:
                device_config = nn.DeviceConfig.CPU()
                device_vram = 99
            else:
                device_config = nn.DeviceConfig.GPUIndexes ([device_idx])
                device_vram = device_config.devices[0].total_mem_gb

            nn.initialize (device_config)

            intro_str = 'Running on %s.' % (client_dict['device_name'])

            self.log_info (intro_str)

            from facelib import FaceEnhancer
            self.fe = FaceEnhancer( place_model_on_cpu=(device_vram<=2 or cpu_only), run_on_cpu=cpu_only )

        #override
        def process_data(self, filepath):
            try:
                dflimg = DFLIMG.load (filepath)
                if dflimg is None or not dflimg.has_data():
                    self.log_err (f"{filepath.name} is not a dfl image file")
                else:
                    dfl_dict = dflimg.get_dict()

                    img = cv2_imread(filepath).astype(np.float32) / 255.0
                    img = self.fe.enhance(img)
                    img = np.clip (img*255, 0, 255).astype(np.uint8)

                    output_filepath = self.output_dirpath / filepath.name

                    cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )

                    dflimg = DFLIMG.load (output_filepath)
                    dflimg.set_dict(dfl_dict)
                    dflimg.save()

                    return (1, filepath, output_filepath)
            except:
                self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")

            return (0, filepath, None)

def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ):
    device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_all_gpu=True) ) \
                    if not cpu_only else nn.DeviceConfig.CPU()

    output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
    output_dirpath.mkdir (exist_ok=True, parents=True)

    dirpath_parts = '/'.join( dirpath.parts[-2:])
    output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
    io.log_info (f"Enhancing faceset in {dirpath_parts}")
    io.log_info ( f"Processing to {output_dirpath_parts}")

    output_images_paths = pathex.get_image_paths(output_dirpath)
    if len(output_images_paths) > 0:
        for filename in output_images_paths:
            Path(filename).unlink()

    image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
    result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, device_config=device_config).run()

    is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
    if is_merge:
        io.log_info (f"Copying processed files to {dirpath_parts}")

        for (filepath, output_filepath) in result:
            try:
                shutil.copy (output_filepath, filepath)
            except:
                pass

        io.log_info (f"Removing {output_dirpath_parts}")
        shutil.rmtree(output_dirpath)