phi-2-chat / README.md
Irfanuruchi's picture
Create README.md
c2347bf verified
metadata
tags:
  - phi-2
  - conversational-ai
  - fine-tuned
license: mit
datasets:
  - UltraChat
  - Clocal_data
base_model: microsoft/phi-2

phi-2-chat

A fine-tuned conversational variant of Microsoft's Phi-2 (2.7B) optimized for dialogue tasks

Model License Hugging Face Hub

Model Details

Base Model

microsoft/phi-2 (2.7B parameters, MIT License)

Training Data

  1. UltraChat (CC-BY-NC-4.0):
   @misc{ultrachat,
     title={UltraChat: A Large-Scale Auto-generated Multi-round Dialogue Dataset},
     author={Ding et al.},
     year={2023},
     howpublished={\url{https://github.com/thunlp/UltraChat}}
   }
  1. Custom synthetic data(Proprietary)

Fine-Tuning

  • Objective: Instruction-following & conversational ability
  • Framework: PyTorch + Transformers
  • Context Window: 2048 tokens

Usage

Quick Inference

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "Irfanuruchi/phi-2-chat",
    trust_remote_code=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Irfanuruchi/phi-2-chat")

# Recommended prompt format:
input_text = "<|user|>Explain dark matter<|assistant|>"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Limitations

  • ** Licence Restrictions: License Restrictions: Non-commercial use applies to UltraChat-derived components (CC-BY-NC-4.0)
  • ** Bias: May reflect biases in base model and training data

License

  • Core Model: MIT (inherited from Phi-2)
  • UltraChat Components: CC-BY-NC-4.0 (non-commercial clause applies)
  • Custom Data: Proprietary

Citation

@misc{phi-2-chat,
  author = {Irfan Uruchi},
  title = {phi-2-chat: Fine-tuned Phi-2 for conversational AI},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Irfanuruchi/phi-2-chat}}
}

@misc{phi2,
  title={Phi-2: The Surprisingly Capable Small Language Model}, 
  author={Microsoft},
  year={2023},
  url={https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/}
}

Contact

For questions or issues, please open a discussion on the Hugging Face Hub.

Or you can do the same also in GitHub:

https://github.com/IrfanUruchi/phi-2-chat