ChaimZhu commited on
Commit
377366b
·
2 Parent(s): db65ad4 78ee00c

Merge branch 'main' of https://huggingface.co/InternRobotics/InternVLA-N1 into main

Browse files
Files changed (1) hide show
  1. README.md +81 -3
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: robotics
3
+ library_name: transformers
4
+ license: cc-by-nc-sa-4.0
5
+ tags:
6
+ - vision-language-model
7
+ - video-language-model
8
+ - navigation
9
+ ---
10
+
11
+ <div id="top" align="center">
12
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64e6d9d229a548f66aff6e5b/4ZRvK6ySWCFj9mlpND791.gif" width=60% >
13
+
14
+ </div>
15
+
16
+
17
+
18
+
19
+ # InternVLA-N1: An Open Dual-System Navigation Foundation Model with Learned Latent Plans
20
+
21
+ [![Code](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/InternRobotics/InternNav)
22
+
23
+ Project page: https://internrobotics.github.io/internvla-n1.github.io/
24
+
25
+ Technical report: https://internrobotics.github.io/internvla-n1.github.io/static/pdfs/InternVLA_N1.pdf
26
+
27
+ Data: https://huggingface.co/datasets/InternRobotics/InternData-N1
28
+
29
+
30
+
31
+ ## 🔔 Important Notice
32
+
33
+ * This repository hosts the **official release** of **InternVLA-N1**.
34
+ * The previously **InternVLA-N1** model has been renamed to **InternVLA-N1-Preview**. If you are looking for the **earlier preview version**, please check [InternVLA-N1-Preview](https://huggingface.co/InternRobotics/InternVLA-N1-Preview).
35
+ * We recommend using this official release for research and deployment, as it contains the most stable and up-to-date improvements.
36
+
37
+ ### Key Difference: Preview vs Official
38
+ | Feature | InternVLA-N1-Preview | InternVLA-N1 (official) |
39
+ | ------------- | ----------------------------------------- | ------------------------------------------------------------------------ |
40
+ | System Design | Dual-System (synchronous) | Dual-System (asynchronous) |
41
+ | Training | System 1 trained only at System 2 inferrence step | System 1 trained on denser step (~25 cm), using latest System 2 hidden state |
42
+ | Inference | System 1, 2 infered at same frequency (~2 hz) | System 1, 2 infered asynchronously, allowing dynamic obstacle avoidance |
43
+ | Performance | Solid baseline in simulation & benchmarks | Improved smoothness, efficiency, and real-world zero-shot generalization |
44
+ | Status | Historical preview | Stable official release (recommended)
45
+
46
+ ## Highlights
47
+
48
+ - Dual-System Framework
49
+
50
+ The first navigation foundation model that achieves joint-tuning and asychronous inference of System-2 reasoning and System-1 action, resulting in smooth and efficient execution during the instruction-followed navigation procedure.
51
+
52
+ - State-of-the-art
53
+
54
+ The whole navigation foundation model with each system achieves state-of-the-art performance on both mainstream and our new established challenging benchmarks, including VLN-CE R2R & RxR, GRScenes-100, VLN-PE, etc.
55
+
56
+ - Sim2Real Zero-shot Generalization
57
+
58
+ The training is based on simulation data InternData-N1 only, with diverse scenes, embodiments and other randomization, while achieving great zero-shot generalization capabilities in the real world.
59
+
60
+ ## Usage
61
+
62
+ Please refer to [InternNav](https://github.com/InternRobotics/InternNav) for its inference, evaluation and gradio demo.
63
+
64
+ ## Citation
65
+
66
+ If you find our work helpful, please consider starring this repo 🌟 and cite:
67
+
68
+ ```bibtex
69
+ @misc{internvla-n1,
70
+ title = {{InternVLA-N1: An} Open Dual-System Navigation Foundation Model with Learned Latent Plans},
71
+ author = {InternVLA-N1 Team},
72
+ year = {2025},
73
+ booktitle={arXiv},
74
+ }
75
+ ```
76
+
77
+ ## License
78
+ This work is under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-nc-sa/4.0/).
79
+
80
+ ## Acknowledgements
81
+ This repository is based on [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL).