|
from typing import Any, Callable, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from enformer_pytorch import Enformer |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
|
|
|
|
def get_activation_fn(activation_name: str) -> Callable: |
|
""" |
|
Returns torch activation function |
|
|
|
Args: |
|
activation_name (str): Name of the activation function. Possible values are |
|
'swish', 'relu', 'gelu', 'sin' |
|
|
|
Raises: |
|
ValueError: If activation_name is not supported |
|
|
|
Returns: |
|
Callable: Activation function |
|
""" |
|
if activation_name == "swish": |
|
return nn.functional.silu |
|
elif activation_name == "relu": |
|
return nn.functional.relu |
|
elif activation_name == "gelu": |
|
return nn.functional.gelu |
|
elif activation_name == "sin": |
|
return torch.sin |
|
else: |
|
raise ValueError(f"Unsupported activation function: {activation_name}") |
|
|
|
|
|
class TorchDownSample1D(nn.Module): |
|
""" |
|
Torch adaptation of DownSample1D in trix.layers.heads.unet_segmentation_head.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
output_channels: int, |
|
activation_fn: str = "swish", |
|
num_layers: int = 2, |
|
): |
|
""" |
|
Args: |
|
input_channels: number of input channels |
|
output_channels: number of output channels. |
|
activation_fn: name of the activation function to use. |
|
Should be one of "gelu", |
|
"gelu-no-approx", "relu", "swish", "silu", "sin". |
|
num_layers: number of convolution layers. |
|
""" |
|
super().__init__() |
|
|
|
self.conv_layers = nn.ModuleList( |
|
[ |
|
nn.Conv1d( |
|
in_channels=input_channels if i == 0 else output_channels, |
|
out_channels=output_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2, padding=0) |
|
|
|
self.activation_fn: Callable = get_activation_fn(activation_fn) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
for conv_layer in self.conv_layers: |
|
x = self.activation_fn(conv_layer(x)) |
|
hidden = x |
|
x = self.avg_pool(hidden) |
|
return x, hidden |
|
|
|
|
|
class TorchUpSample1D(nn.Module): |
|
""" |
|
Torch adaptation of UpSample1D in trix.layers.heads.unet_segmentation_head.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
output_channels: int, |
|
activation_fn: str = "swish", |
|
num_layers: int = 2, |
|
interpolation_method: str = "nearest", |
|
): |
|
""" |
|
Args: |
|
input_channels: number of input channels. |
|
output_channels: number of output channels. |
|
activation_fn: name of the activation function to use. |
|
Should be one of "gelu", |
|
"gelu-no-approx", "relu", "swish", "silu", "sin". |
|
interpolation_method: Method to be used for upsampling interpolation. |
|
Should be one of "nearest", "linear", "cubic", "lanczos3", "lanczos5". |
|
num_layers: number of convolution layers. |
|
""" |
|
super().__init__() |
|
|
|
self.conv_transpose_layers = nn.ModuleList( |
|
[ |
|
nn.ConvTranspose1d( |
|
in_channels=input_channels if i == 0 else output_channels, |
|
out_channels=output_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.interpolation_mode = interpolation_method |
|
self.activation_fn: Callable = get_activation_fn(activation_fn) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for conv_layer in self.conv_transpose_layers: |
|
x = self.activation_fn(conv_layer(x)) |
|
x = nn.functional.interpolate( |
|
x, |
|
scale_factor=2, |
|
mode=self.interpolation_mode, |
|
align_corners=False if self.interpolation_mode != "nearest" else None, |
|
) |
|
return x |
|
|
|
|
|
class TorchFinalConv1D(nn.Module): |
|
""" |
|
Torch adaptation of FinalConv1D in trix.layers.heads.unet_segmentation_head.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
output_channels: int, |
|
activation_fn: str = "swish", |
|
num_layers: int = 2, |
|
): |
|
""" |
|
Args: |
|
input_channels: number of input channels |
|
output_channels: number of output channels. |
|
activation_fn: name of the activation function to use. |
|
Should be one of "gelu", |
|
"gelu-no-approx", "relu", "swish", "silu", "sin". |
|
num_layers: number of convolution layers. |
|
name: module name. |
|
""" |
|
super().__init__() |
|
|
|
self.conv_layers = nn.ModuleList( |
|
[ |
|
nn.Conv1d( |
|
in_channels=input_channels if i == 0 else output_channels, |
|
out_channels=output_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.activation_fn: Callable = get_activation_fn(activation_fn) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for i, conv_layer in enumerate(self.conv_layers): |
|
x = conv_layer(x) |
|
if i < len(self.conv_layers) - 1: |
|
x = self.activation_fn(x) |
|
return x |
|
|
|
|
|
class TorchUNET1DSegmentationHead(nn.Module): |
|
""" |
|
Torch adaptation of UNET1DSegmentationHead in |
|
trix.layers.heads.unet_segmentation_head.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
input_embed_dim: int, |
|
output_channels_list: Tuple[int, ...] = (64, 128, 256), |
|
activation_fn: str = "swish", |
|
num_conv_layers_per_block: int = 2, |
|
upsampling_interpolation_method: str = "nearest", |
|
): |
|
""" |
|
Args: |
|
num_classes: number of classes to segment |
|
output_channels_list: list of the number of output channel at each level of |
|
the UNET |
|
activation_fn: name of the activation function to use. |
|
Should be one of "gelu", |
|
"gelu-no-approx", "relu", "swish", "silu", "sin". |
|
num_conv_layers_per_block: number of convolution layers per block. |
|
upsampling_interpolation_method: Method to be used for |
|
interpolation in upsampling blocks. Should be one of "nearest", |
|
"linear", "cubic", "lanczos3", "lanczos5". |
|
""" |
|
super().__init__() |
|
|
|
input_channels_list = (input_embed_dim,) + output_channels_list[:-1] |
|
|
|
self.num_pooling_layers = len(output_channels_list) |
|
self.downsample_blocks = nn.ModuleList( |
|
[ |
|
TorchDownSample1D( |
|
input_channels=input_channels, |
|
output_channels=output_channels, |
|
activation_fn=activation_fn, |
|
num_layers=num_conv_layers_per_block, |
|
) |
|
for input_channels, output_channels in zip( |
|
input_channels_list, output_channels_list |
|
) |
|
] |
|
) |
|
|
|
input_channels_list = (output_channels_list[-1],) + tuple( |
|
list(reversed(output_channels_list))[:-1] |
|
) |
|
|
|
self.upsample_blocks = nn.ModuleList( |
|
[ |
|
TorchUpSample1D( |
|
input_channels=input_channels, |
|
output_channels=output_channels, |
|
activation_fn=activation_fn, |
|
num_layers=num_conv_layers_per_block, |
|
interpolation_method=upsampling_interpolation_method, |
|
) |
|
for input_channels, output_channels in zip( |
|
input_channels_list, reversed(output_channels_list) |
|
) |
|
] |
|
) |
|
|
|
self.final_block = TorchFinalConv1D( |
|
activation_fn=activation_fn, |
|
input_channels=output_channels_list[0], |
|
output_channels=num_classes * 2, |
|
num_layers=num_conv_layers_per_block, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if x.shape[-1] % 2**self.num_pooling_layers: |
|
raise ValueError( |
|
"Input length must be divisible by 2 to the power of " |
|
"the number of pooling layers." |
|
) |
|
|
|
hiddens = [] |
|
for downsample_block in self.downsample_blocks: |
|
x, hidden = downsample_block(x) |
|
hiddens.append(hidden) |
|
|
|
for upsample_block, hidden in zip(self.upsample_blocks, reversed(hiddens)): |
|
x = upsample_block(x) + hidden |
|
|
|
x = self.final_block(x) |
|
return x |
|
|
|
|
|
class TorchUNetHead(nn.Module): |
|
""" |
|
Torch adaptation of UNetHead in |
|
genomics_research/segmentnt/layers/segmentation_head.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
features: List[str], |
|
num_classes: int = 2, |
|
embed_dimension: int = 1024, |
|
nucl_per_token: int = 6, |
|
num_layers: int = 2, |
|
remove_cls_token: bool = True, |
|
): |
|
""" |
|
Args: |
|
features (List[str]): List of features names. |
|
num_classes (int): Number of classes. |
|
embed_dimension (int): Embedding dimension. |
|
nucl_per_token (int): Number of nucleotides per token. |
|
num_layers (int): Number of layers. |
|
remove_cls_token (bool): Whether to remove the CLS token. |
|
name: Name the layer. Defaults to None. |
|
""" |
|
super().__init__() |
|
self._num_features = len(features) |
|
self._num_classes = num_classes |
|
self.nucl_per_token = nucl_per_token |
|
self.remove_cls_token = remove_cls_token |
|
|
|
self.unet = TorchUNET1DSegmentationHead( |
|
num_classes=embed_dimension // 2, |
|
output_channels_list=tuple( |
|
embed_dimension * (2**i) for i in range(num_layers) |
|
), |
|
input_embed_dim=embed_dimension, |
|
) |
|
|
|
self.fc = nn.Linear( |
|
embed_dimension, |
|
self.nucl_per_token * self._num_classes * self._num_features, |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, sequence_mask: Optional[torch.Tensor] = None |
|
) -> Dict[str, torch.Tensor]: |
|
if self.remove_cls_token: |
|
x = x[:, 1:] |
|
|
|
x = self.unet(x) |
|
x = nn.functional.silu(x) |
|
|
|
x = x.transpose(2, 1) |
|
logits = self.fc(x) |
|
|
|
batch_size, seq_len, _ = x.shape |
|
logits = logits.view( |
|
batch_size, |
|
seq_len * self.nucl_per_token, |
|
self._num_features, |
|
self._num_classes, |
|
) |
|
|
|
return {"logits": logits} |
|
|
|
|
|
FEATURES = [ |
|
"protein_coding_gene", |
|
"lncRNA", |
|
"exon", |
|
"intron", |
|
"splice_donor", |
|
"splice_acceptor", |
|
"5UTR", |
|
"3UTR", |
|
"CTCF-bound", |
|
"polyA_signal", |
|
"enhancer_Tissue_specific", |
|
"enhancer_Tissue_invariant", |
|
"promoter_Tissue_specific", |
|
"promoter_Tissue_invariant", |
|
] |
|
|
|
|
|
class SegmentEnformerConfig(PretrainedConfig): |
|
model_type = "segment_enformer" |
|
|
|
def __init__( |
|
self, |
|
features: List[str] = FEATURES, |
|
embed_dim: int = 1536, |
|
dim_divisible_by: int = 128, |
|
**kwargs: Dict[str, Any], |
|
) -> None: |
|
self.features = features |
|
self.embed_dim = embed_dim |
|
self.dim_divisible_by = dim_divisible_by |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
class SegmentEnformer(PreTrainedModel): |
|
config_class = SegmentEnformerConfig |
|
|
|
def __init__(self, config: SegmentEnformerConfig) -> None: |
|
super().__init__(config=config) |
|
|
|
enformer = Enformer.from_pretrained("EleutherAI/enformer-official-rough") |
|
|
|
self.stem = enformer.stem |
|
self.conv_tower = enformer.conv_tower |
|
self.transformer = enformer.transformer |
|
|
|
self.unet_head = TorchUNetHead( |
|
features=config.features, |
|
embed_dimension=config.embed_dim, |
|
nucl_per_token=config.dim_divisible_by, |
|
remove_cls_token=False, |
|
) |
|
|
|
def __call__(self, x: torch.Tensor) -> torch.Tensor: |
|
x = rearrange(x, "b n d -> b d n") |
|
x = self.stem(x) |
|
|
|
x = self.conv_tower(x) |
|
|
|
x = rearrange(x, "b d n -> b n d") |
|
x = self.transformer(x) |
|
|
|
x = rearrange(x, "b n d -> b d n") |
|
x = self.unet_head(x) |
|
|
|
return x |
|
|