File size: 12,860 Bytes
f7aa1ae
5d7e1fc
e5a0f63
f7aa1ae
5d7e1fc
 
 
 
f7aa1ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7e1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7aa1ae
e5a0f63
5d7e1fc
 
 
 
 
 
 
 
 
 
e5a0f63
5d7e1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a0f63
5d7e1fc
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from typing import Any, Callable, Dict, List, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange
from enformer_pytorch import Enformer
from transformers import PretrainedConfig, PreTrainedModel


def get_activation_fn(activation_name: str) -> Callable:
    """
    Returns torch activation function

    Args:
        activation_name (str): Name of the activation function. Possible values are
            'swish', 'relu', 'gelu', 'sin'

    Raises:
        ValueError: If activation_name is not supported

    Returns:
        Callable: Activation function
    """
    if activation_name == "swish":
        return nn.functional.silu  # type: ignore
    elif activation_name == "relu":
        return nn.functional.relu  # type: ignore
    elif activation_name == "gelu":
        return nn.functional.gelu  # type: ignore
    elif activation_name == "sin":
        return torch.sin  # type: ignore
    else:
        raise ValueError(f"Unsupported activation function: {activation_name}")


class TorchDownSample1D(nn.Module):
    """
    Torch adaptation of DownSample1D in trix.layers.heads.unet_segmentation_head.py
    """

    def __init__(
        self,
        input_channels: int,
        output_channels: int,
        activation_fn: str = "swish",
        num_layers: int = 2,
    ):
        """
        Args:
            input_channels: number of input channels
            output_channels: number of output channels.
            activation_fn: name of the activation function to use.
                Should be one of "gelu",
                "gelu-no-approx", "relu", "swish", "silu", "sin".
            num_layers: number of convolution layers.
        """
        super().__init__()

        self.conv_layers = nn.ModuleList(
            [
                nn.Conv1d(
                    in_channels=input_channels if i == 0 else output_channels,
                    out_channels=output_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                )
                for i in range(num_layers)
            ]
        )

        self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2, padding=0)

        self.activation_fn: Callable = get_activation_fn(activation_fn)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        for conv_layer in self.conv_layers:
            x = self.activation_fn(conv_layer(x))
        hidden = x
        x = self.avg_pool(hidden)
        return x, hidden


class TorchUpSample1D(nn.Module):
    """
    Torch adaptation of UpSample1D in trix.layers.heads.unet_segmentation_head.py
    """

    def __init__(
        self,
        input_channels: int,
        output_channels: int,
        activation_fn: str = "swish",
        num_layers: int = 2,
        interpolation_method: str = "nearest",
    ):
        """
        Args:
            input_channels: number of input channels.
            output_channels: number of output channels.
            activation_fn: name of the activation function to use.
                Should be one of "gelu",
                "gelu-no-approx", "relu", "swish", "silu", "sin".
            interpolation_method: Method to be used for upsampling interpolation.
                Should be one of "nearest", "linear", "cubic", "lanczos3", "lanczos5".
            num_layers: number of convolution layers.
        """
        super().__init__()

        self.conv_transpose_layers = nn.ModuleList(
            [
                nn.ConvTranspose1d(
                    in_channels=input_channels if i == 0 else output_channels,
                    out_channels=output_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                )
                for i in range(num_layers)
            ]
        )

        self.interpolation_mode = interpolation_method
        self.activation_fn: Callable = get_activation_fn(activation_fn)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for conv_layer in self.conv_transpose_layers:
            x = self.activation_fn(conv_layer(x))
        x = nn.functional.interpolate(
            x,
            scale_factor=2,
            mode=self.interpolation_mode,
            align_corners=False if self.interpolation_mode != "nearest" else None,
        )
        return x


class TorchFinalConv1D(nn.Module):
    """
    Torch adaptation of FinalConv1D in trix.layers.heads.unet_segmentation_head.py
    """

    def __init__(
        self,
        input_channels: int,
        output_channels: int,
        activation_fn: str = "swish",
        num_layers: int = 2,
    ):
        """
        Args:
            input_channels: number of input channels
            output_channels: number of output channels.
            activation_fn: name of the activation function to use.
                Should be one of "gelu",
                "gelu-no-approx", "relu", "swish", "silu", "sin".
            num_layers: number of convolution layers.
            name: module name.
        """
        super().__init__()

        self.conv_layers = nn.ModuleList(
            [
                nn.Conv1d(
                    in_channels=input_channels if i == 0 else output_channels,
                    out_channels=output_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                )
                for i in range(num_layers)
            ]
        )

        self.activation_fn: Callable = get_activation_fn(activation_fn)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for i, conv_layer in enumerate(self.conv_layers):
            x = conv_layer(x)
            if i < len(self.conv_layers) - 1:
                x = self.activation_fn(x)
        return x


class TorchUNET1DSegmentationHead(nn.Module):
    """
    Torch adaptation of UNET1DSegmentationHead in
    trix.layers.heads.unet_segmentation_head.py
    """

    def __init__(
        self,
        num_classes: int,
        input_embed_dim: int,
        output_channels_list: Tuple[int, ...] = (64, 128, 256),
        activation_fn: str = "swish",
        num_conv_layers_per_block: int = 2,
        upsampling_interpolation_method: str = "nearest",
    ):
        """
        Args:
            num_classes: number of classes to segment
            output_channels_list: list of the number of output channel at each level of
                the UNET
            activation_fn: name of the activation function to use.
                Should be one of "gelu",
                "gelu-no-approx", "relu", "swish", "silu", "sin".
            num_conv_layers_per_block: number of convolution layers per block.
            upsampling_interpolation_method: Method to be used for
                interpolation in upsampling blocks. Should be one of "nearest",
                "linear", "cubic", "lanczos3", "lanczos5".
        """
        super().__init__()

        input_channels_list = (input_embed_dim,) + output_channels_list[:-1]

        self.num_pooling_layers = len(output_channels_list)
        self.downsample_blocks = nn.ModuleList(
            [
                TorchDownSample1D(
                    input_channels=input_channels,
                    output_channels=output_channels,
                    activation_fn=activation_fn,
                    num_layers=num_conv_layers_per_block,
                )
                for input_channels, output_channels in zip(
                    input_channels_list, output_channels_list
                )
            ]
        )

        input_channels_list = (output_channels_list[-1],) + tuple(
            list(reversed(output_channels_list))[:-1]
        )

        self.upsample_blocks = nn.ModuleList(
            [
                TorchUpSample1D(
                    input_channels=input_channels,
                    output_channels=output_channels,
                    activation_fn=activation_fn,
                    num_layers=num_conv_layers_per_block,
                    interpolation_method=upsampling_interpolation_method,
                )
                for input_channels, output_channels in zip(
                    input_channels_list, reversed(output_channels_list)
                )
            ]
        )

        self.final_block = TorchFinalConv1D(
            activation_fn=activation_fn,
            input_channels=output_channels_list[0],
            output_channels=num_classes * 2,
            num_layers=num_conv_layers_per_block,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if x.shape[-1] % 2**self.num_pooling_layers:
            raise ValueError(
                "Input length must be divisible by 2 to the power of "
                "the number of pooling layers."
            )

        hiddens = []
        for downsample_block in self.downsample_blocks:
            x, hidden = downsample_block(x)
            hiddens.append(hidden)

        for upsample_block, hidden in zip(self.upsample_blocks, reversed(hiddens)):
            x = upsample_block(x) + hidden

        x = self.final_block(x)
        return x


class TorchUNetHead(nn.Module):
    """
    Torch adaptation of UNetHead in
    genomics_research/segmentnt/layers/segmentation_head.py
    """

    def __init__(
        self,
        features: List[str],
        num_classes: int = 2,
        embed_dimension: int = 1024,
        nucl_per_token: int = 6,
        num_layers: int = 2,
        remove_cls_token: bool = True,
    ):
        """
        Args:
            features (List[str]): List of features names.
            num_classes (int): Number of classes.
            embed_dimension (int): Embedding dimension.
            nucl_per_token (int): Number of nucleotides per token.
            num_layers (int): Number of layers.
            remove_cls_token (bool): Whether to remove the CLS token.
            name: Name  the layer. Defaults to None.
        """
        super().__init__()
        self._num_features = len(features)
        self._num_classes = num_classes
        self.nucl_per_token = nucl_per_token
        self.remove_cls_token = remove_cls_token

        self.unet = TorchUNET1DSegmentationHead(
            num_classes=embed_dimension // 2,
            output_channels_list=tuple(
                embed_dimension * (2**i) for i in range(num_layers)
            ),
            input_embed_dim=embed_dimension,
        )

        self.fc = nn.Linear(
            embed_dimension,
            self.nucl_per_token * self._num_classes * self._num_features,
        )

    def forward(
        self, x: torch.Tensor, sequence_mask: Optional[torch.Tensor] = None
    ) -> Dict[str, torch.Tensor]:
        if self.remove_cls_token:
            x = x[:, 1:]

        x = self.unet(x)
        x = nn.functional.silu(x)

        x = x.transpose(2, 1)
        logits = self.fc(x)

        batch_size, seq_len, _ = x.shape
        logits = logits.view(  # noqa
            batch_size,
            seq_len * self.nucl_per_token,
            self._num_features,
            self._num_classes,
        )

        return {"logits": logits}


FEATURES = [
    "protein_coding_gene",
    "lncRNA",
    "exon",
    "intron",
    "splice_donor",
    "splice_acceptor",
    "5UTR",
    "3UTR",
    "CTCF-bound",
    "polyA_signal",
    "enhancer_Tissue_specific",
    "enhancer_Tissue_invariant",
    "promoter_Tissue_specific",
    "promoter_Tissue_invariant",
]


class SegmentEnformerConfig(PretrainedConfig):
    model_type = "segment_enformer"

    def __init__(
        self,
        features: List[str] = FEATURES,
        embed_dim: int = 1536,
        dim_divisible_by: int = 128,
        **kwargs: Dict[str, Any],
    ) -> None:
        self.features = features
        self.embed_dim = embed_dim
        self.dim_divisible_by = dim_divisible_by

        super().__init__(**kwargs)


class SegmentEnformer(PreTrainedModel):
    config_class = SegmentEnformerConfig

    def __init__(self, config: SegmentEnformerConfig) -> None:
        super().__init__(config=config)

        enformer = Enformer.from_pretrained("EleutherAI/enformer-official-rough")

        self.stem = enformer.stem
        self.conv_tower = enformer.conv_tower
        self.transformer = enformer.transformer

        self.unet_head = TorchUNetHead(
            features=config.features,
            embed_dimension=config.embed_dim,
            nucl_per_token=config.dim_divisible_by,
            remove_cls_token=False,
        )

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        x = rearrange(x, "b n d -> b d n")
        x = self.stem(x)

        x = self.conv_tower(x)

        x = rearrange(x, "b d n -> b n d")
        x = self.transformer(x)

        x = rearrange(x, "b n d -> b d n")
        x = self.unet_head(x)

        return x