segment_enformer / README.md
Yanisadel's picture
Update README.md
91ef38a verified
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
# SegmentEnformer
SegmentEnformer is a segmentation model leveraging [Enformer](https://www.nature.com/articles/s41592-021-01252-x) to predict the location of several types of genomics
elements in a sequence at a single nucleotide resolution. It was trained on 14 different classes, including gene (protein-coding genes, lncRNAs, 5’UTR, 3’UTR, exon, intron, splice acceptor and donor sites) and regulatory (polyA signal, tissue-invariant and
tissue-specific promoters and enhancers, and CTCF-bound sites) elements.
**Developed by:** [InstaDeep](https://huggingface.co/InstaDeepAI)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [Nucleotide Transformer](https://github.com/instadeepai/nucleotide-transformer)
- **Paper:** [Segmenting the genome at single-nucleotide resolution with DNA foundation models](https://www.biorxiv.org/content/biorxiv/early/2024/03/15/2024.03.14.584712.full.pdf)
### How to use
Until its next release, the transformers library needs to be installed from source with the following command in order to use the models.
PyTorch, einops and enformer_pytorch should also be installed.
```
pip install --upgrade git+https://github.com/huggingface/transformers.git
!pip install torch einops enformer_pytorch==0.7.6
```
A small snippet of code is given here in order to retrieve both logits from dummy DNA sequences.
```
import torch
from transformers import AutoModel
model = AutoModel.from_pretrained("InstaDeepAI/segment_enformer", trust_remote_code=True)
def encode_sequences(sequences):
one_hot_map = {
'a': torch.tensor([1., 0., 0., 0.]),
'c': torch.tensor([0., 1., 0., 0.]),
'g': torch.tensor([0., 0., 1., 0.]),
't': torch.tensor([0., 0., 0., 1.]),
'n': torch.tensor([0., 0., 0., 0.]),
'A': torch.tensor([1., 0., 0., 0.]),
'C': torch.tensor([0., 1., 0., 0.]),
'G': torch.tensor([0., 0., 1., 0.]),
'T': torch.tensor([0., 0., 0., 1.]),
'N': torch.tensor([0., 0., 0., 0.])
}
def encode_sequence(seq_str):
one_hot_list = []
for char in seq_str:
one_hot_vector = one_hot_map.get(char, torch.tensor([0.25, 0.25, 0.25, 0.25]))
one_hot_list.append(one_hot_vector)
return torch.stack(one_hot_list)
if isinstance(sequences, list):
return torch.stack([encode_sequence(seq) for seq in sequences])
else:
return encode_sequence(sequences)
sequences = ["A"*196608, "G"*196608]
one_hot_encoding = encode_sequences(sequences)
preds = model(one_hot_encoding)
print(preds['logits'])
```
## Training data
The **SegmentEnformer** model was trained on all human chromosomes except for chromosomes 20 and 21, kept as test set, and chromosome 22, used as a validation set.
During training, sequences are randomly sampled in the genome with associated annotations. However, we keep the sequences in the validation and test set fixed by
using a sliding window of length 196kb (original enformer input length) over the chromosomes 20 and 21. The validation set was used to monitor training and for early stopping.
## Training procedure
### Preprocessing
The DNA sequences are tokenized using one-hot encoding similar to the Enformer model
### Architecture
The model is composed of the Enformer backbone, from which we remove the heads and replaced it by a 1-dimensional U-Net segmentation head made of 2 downsampling convolutional blocks and 2 upsampling convolutional blocks. Each of these
blocks is made of 2 convolutional layers with 1, 024 and 2, 048 kernels respectively.
### BibTeX entry and citation info
```bibtex
@article{de2024segmentnt,
title={SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models},
author={de Almeida, Bernardo P and Dalla-Torre, Hugo and Richard, Guillaume and Blum, Christopher and Hexemer, Lorenz and Gelard, Maxence and Pandey, Priyanka and Laurent, Stefan and Laterre, Alexandre and Lang, Maren and others},
journal={bioRxiv},
pages={2024--03},
year={2024},
publisher={Cold Spring Harbor Laboratory}
}
```