mbart_ru_sum_gazeta / README.md
IlyaGusev's picture
README
ae42ffb
|
raw
history blame
2.07 kB
---
language:
- ru
tags:
- summarization
- mbart
license: apache-2.0
---
# MBARTRuSumGazeta
## Model description
This is a ported version of [fairseq model](https://www.dropbox.com/s/fijtntnifbt9h0k/gazeta_mbart_v2_fairseq.tar.gz).
For more details, please see, [Dataset for Automatic Summarization of Russian News](https://arxiv.org/abs/2006.11063).
## Intended uses & limitations
#### How to use
```python
from transformers import MBartTokenizer, MBartForConditionalGeneration
article_text = "..."
model_name = "IlyaGusev/mbart_ru_sum_gazeta"
tokenizer = MBartTokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)
input_ids = tokenizer.prepare_seq2seq_batch(
[source],
src_lang="en_XX",
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=600
)["input_ids"][0]
output_ids = model.generate(
input_ids=input_ids.unsqueeze(0),
max_length=162,
no_repeat_ngram_size=3,
num_beams=5,
top_k=0,
decoder_start_token_id=tokenizer.lang_code_to_id["ru_RU"]
)[0]
summary = tokenizer.decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(summary)
```
#### Limitations and bias
- The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain change
## Training data
- Dataset: https://github.com/IlyaGusev/gazeta
## Training procedure
- Fairseq training script: https://github.com/IlyaGusev/summarus/blob/master/external/bart_scripts/train.sh
- Porting: https://colab.research.google.com/drive/13jXOlCpArV-lm4jZQ0VgOpj6nFBYrLAr
## Eval results
### BibTeX entry and citation info
```bibtex
@InProceedings{10.1007/978-3-030-59082-6_9,
author="Gusev, Ilya",
editor="Filchenkov, Andrey
and Kauttonen, Janne
and Pivovarova, Lidia",
title="Dataset for Automatic Summarization of Russian News",
booktitle="Artificial Intelligence and Natural Language",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="122--134",
isbn="978-3-030-59082-6"
}
```