Add link to paper, link to Github repository
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
- en
|
5 |
-
library_name: gliner
|
6 |
datasets:
|
7 |
- knowledgator/GLINER-multi-task-synthetic-data
|
8 |
- knowledgator/biomed_NER
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pipeline_tag: token-classification
|
10 |
tags:
|
11 |
- NER
|
@@ -14,19 +19,19 @@ tags:
|
|
14 |
- encoder
|
15 |
- entity recognition
|
16 |
- biomed
|
17 |
-
base_model:
|
18 |
-
- microsoft/deberta-v3-base
|
19 |
-
- BAAI/bge-small-en-v1.5
|
20 |
-
metrics:
|
21 |
-
- f1
|
22 |
---
|
|
|
23 |
# GLiNER-BioMed
|
24 |
|
|
|
|
|
25 |
**GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
26 |
|
27 |
|
28 |
**GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
|
29 |
|
|
|
|
|
30 |
### How to Use
|
31 |
Install the official GLiNER library with pip:
|
32 |
```bash
|
@@ -92,28 +97,28 @@ We examined our models on 8 complex real-world datasets and compared them with o
|
|
92 |
| [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
|
93 |
| [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
|
94 |
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
|
95 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42
|
96 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1)
|
97 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1)
|
98 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5)
|
99 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)**
|
100 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)**
|
101 |
-
| **Base models**
|
102 |
-
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1)
|
103 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2)
|
104 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)
|
105 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1)
|
106 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5)
|
107 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)**
|
108 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)**
|
109 |
-
| **Small models**
|
110 |
-
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1)
|
111 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2)
|
112 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1)
|
113 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1)
|
114 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5)
|
115 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)**
|
116 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)**
|
117 |
|
118 |
|
119 |
### Join Our Discord
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- microsoft/deberta-v3-base
|
4 |
+
- BAAI/bge-small-en-v1.5
|
|
|
5 |
datasets:
|
6 |
- knowledgator/GLINER-multi-task-synthetic-data
|
7 |
- knowledgator/biomed_NER
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
library_name: gliner
|
11 |
+
license: apache-2.0
|
12 |
+
metrics:
|
13 |
+
- f1
|
14 |
pipeline_tag: token-classification
|
15 |
tags:
|
16 |
- NER
|
|
|
19 |
- encoder
|
20 |
- entity recognition
|
21 |
- biomed
|
|
|
|
|
|
|
|
|
|
|
22 |
---
|
23 |
+
|
24 |
# GLiNER-BioMed
|
25 |
|
26 |
+
This repository contains the models as described in [GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://huggingface.co/papers/2504.00676).
|
27 |
+
|
28 |
**GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
29 |
|
30 |
|
31 |
**GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
|
32 |
|
33 |
+
For the official code repository, visit https://github.com/ds4dh/GLiNER-biomed.
|
34 |
+
|
35 |
### How to Use
|
36 |
Install the official GLiNER library with pip:
|
37 |
```bash
|
|
|
97 |
| [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
|
98 |
| [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
|
99 |
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
|
100 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42 \t| 15.44 \t| 33.11 \t|
|
101 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) \t| 48.04\t| 29.75 \t| 28.20 \t| 43.43 \t|
|
102 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) \t| 48.99\t| 31.79 \t| 33.77 \t| 45.13 \t|
|
103 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) \t| 53.81\t| 35.22 \t| 35.65 \t| 51.57 \t|
|
104 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** \t| **59.77**| **40.67** \t| **42.65** \t| **58.40** |
|
105 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** \t| 54.90\t| 35.78 \t| 31.66 \t| 50.46 \t|
|
106 |
+
| **Base models** \t| \t| \t| \t| \t|
|
107 |
+
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) \t| 41.61\t| 24.98 \t| 10.27 \t| 31.59 \t|
|
108 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) \t| 34.33\t| 24.48 \t| 22.01 \t| 30.58 \t|
|
109 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) \t| 40.25\t| 25.26 \t| 14.41 \t| 32.64 \t|
|
110 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) \t| 41.59\t| 27.16 \t| 17.74 \t| 34.44 \t|
|
111 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) \t| 46.49\t| 30.93 \t| 25.26 \t| 44.68 \t|
|
112 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** \t| 54.37| **36.20** \t| **41.61** \t| 53.05 |
|
113 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** \t| **58.31**\t| 35.22 \t| 32.39 \t| **54.91** \t|
|
114 |
+
| **Small models** \t| \t| \t| \t| \t|
|
115 |
+
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) \t| 40.99\t| 22.81 \t| 7.86 \t| 31.15 \t|
|
116 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) \t| 33.55\t| 21.12 \t| 15.76 \t| 28.78 \t|
|
117 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) \t| 38.45\t| 23.25 \t| 10.92 \t| 30.67 \t|
|
118 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) \t| 39.15\t| 24.96 \t| 14.48 \t| 33.10 \t|
|
119 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) \t| 38.21\t| 28.53 \t| 18.01 \t| 36.88 \t|
|
120 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** \t| 52.53| **34.49** \t| **38.17** \t| 50.87 |
|
121 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** \t| **56.93**\t| 33.88 \t| 33.61 \t| **53.12** \t|
|
122 |
|
123 |
|
124 |
### Join Our Discord
|