Ihor
/

Token Classification
GLiNER
PyTorch
English
NER
GLiNER
information extraction
encoder
entity recognition
biomed

Add link to paper, link to Github repository

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +36 -31
README.md CHANGED
@@ -1,11 +1,16 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- library_name: gliner
6
  datasets:
7
  - knowledgator/GLINER-multi-task-synthetic-data
8
  - knowledgator/biomed_NER
 
 
 
 
 
 
9
  pipeline_tag: token-classification
10
  tags:
11
  - NER
@@ -14,19 +19,19 @@ tags:
14
  - encoder
15
  - entity recognition
16
  - biomed
17
- base_model:
18
- - microsoft/deberta-v3-base
19
- - BAAI/bge-small-en-v1.5
20
- metrics:
21
- - f1
22
  ---
 
23
  # GLiNER-BioMed
24
 
 
 
25
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
26
 
27
 
28
  **GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
29
 
 
 
30
  ### How to Use
31
  Install the official GLiNER library with pip:
32
  ```bash
@@ -92,28 +97,28 @@ We examined our models on 8 complex real-world datasets and compared them with o
92
  | [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
93
  | [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
94
  | [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
95
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42 | 15.44 | 33.11 |
96
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) | 48.04 | 29.75 | 28.20 | 43.43 |
97
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) | 48.99 | 31.79 | 33.77 | 45.13 |
98
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) | 53.81 | 35.22 | 35.65 | 51.57 |
99
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** | **59.77**| **40.67** | **42.65** | **58.40** |
100
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** | 54.90 | 35.78 | 31.66 | 50.46 |
101
- | **Base models** | | | | |
102
- | [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) | 41.61 | 24.98 | 10.27 | 31.59 |
103
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) | 34.33 | 24.48 | 22.01 | 30.58 |
104
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) | 40.25 | 25.26 | 14.41 | 32.64 |
105
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) | 41.59 | 27.16 | 17.74 | 34.44 |
106
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) | 46.49 | 30.93 | 25.26 | 44.68 |
107
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** | 54.37| **36.20** | **41.61** | 53.05 |
108
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** | **58.31** | 35.22 | 32.39 | **54.91** |
109
- | **Small models** | | | | |
110
- | [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) | 40.99 | 22.81 | 7.86 | 31.15 |
111
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) | 33.55 | 21.12 | 15.76 | 28.78 |
112
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) | 38.45 | 23.25 | 10.92 | 30.67 |
113
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) | 39.15 | 24.96 | 14.48 | 33.10 |
114
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) | 38.21 | 28.53 | 18.01 | 36.88 |
115
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** | 52.53| **34.49** | **38.17** | 50.87 |
116
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** | **56.93** | 33.88 | 33.61 | **53.12** |
117
 
118
 
119
  ### Join Our Discord
 
1
  ---
2
+ base_model:
3
+ - microsoft/deberta-v3-base
4
+ - BAAI/bge-small-en-v1.5
 
5
  datasets:
6
  - knowledgator/GLINER-multi-task-synthetic-data
7
  - knowledgator/biomed_NER
8
+ language:
9
+ - en
10
+ library_name: gliner
11
+ license: apache-2.0
12
+ metrics:
13
+ - f1
14
  pipeline_tag: token-classification
15
  tags:
16
  - NER
 
19
  - encoder
20
  - entity recognition
21
  - biomed
 
 
 
 
 
22
  ---
23
+
24
  # GLiNER-BioMed
25
 
26
+ This repository contains the models as described in [GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://huggingface.co/papers/2504.00676).
27
+
28
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
29
 
30
 
31
  **GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
32
 
33
+ For the official code repository, visit https://github.com/ds4dh/GLiNER-biomed.
34
+
35
  ### How to Use
36
  Install the official GLiNER library with pip:
37
  ```bash
 
97
  | [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
98
  | [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
99
  | [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
100
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42 \t| 15.44 \t| 33.11 \t|
101
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) \t| 48.04\t| 29.75 \t| 28.20 \t| 43.43 \t|
102
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) \t| 48.99\t| 31.79 \t| 33.77 \t| 45.13 \t|
103
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) \t| 53.81\t| 35.22 \t| 35.65 \t| 51.57 \t|
104
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** \t| **59.77**| **40.67** \t| **42.65** \t| **58.40** |
105
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** \t| 54.90\t| 35.78 \t| 31.66 \t| 50.46 \t|
106
+ | **Base models** \t| \t| \t| \t| \t|
107
+ | [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) \t| 41.61\t| 24.98 \t| 10.27 \t| 31.59 \t|
108
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) \t| 34.33\t| 24.48 \t| 22.01 \t| 30.58 \t|
109
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) \t| 40.25\t| 25.26 \t| 14.41 \t| 32.64 \t|
110
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) \t| 41.59\t| 27.16 \t| 17.74 \t| 34.44 \t|
111
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) \t| 46.49\t| 30.93 \t| 25.26 \t| 44.68 \t|
112
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** \t| 54.37| **36.20** \t| **41.61** \t| 53.05 |
113
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** \t| **58.31**\t| 35.22 \t| 32.39 \t| **54.91** \t|
114
+ | **Small models** \t| \t| \t| \t| \t|
115
+ | [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) \t| 40.99\t| 22.81 \t| 7.86 \t| 31.15 \t|
116
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) \t| 33.55\t| 21.12 \t| 15.76 \t| 28.78 \t|
117
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) \t| 38.45\t| 23.25 \t| 10.92 \t| 30.67 \t|
118
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) \t| 39.15\t| 24.96 \t| 14.48 \t| 33.10 \t|
119
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) \t| 38.21\t| 28.53 \t| 18.01 \t| 36.88 \t|
120
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** \t| 52.53| **34.49** \t| **38.17** \t| 50.87 |
121
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** \t| **56.93**\t| 33.88 \t| 33.61 \t| **53.12** \t|
122
 
123
 
124
  ### Join Our Discord