|
--- |
|
base_model: IAmSkyDra/BARTBana_v5 |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- sacrebleu |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: BARTBana_Translation_v5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BARTBana_Translation_v5 |
|
|
|
This model is a fine-tuned version of [IAmSkyDra/BARTBana_v5](https://huggingface.co/IAmSkyDra/BARTBana_v5) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5493 |
|
- Sacrebleu: 8.2109 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| 0.8112 | 1.0 | 742 | 0.7198 | 1.9252 | |
|
| 0.7466 | 2.0 | 1484 | 0.6679 | 3.0362 | |
|
| 0.6719 | 3.0 | 2226 | 0.6347 | 4.1068 | |
|
| 0.6522 | 4.0 | 2968 | 0.6128 | 4.9362 | |
|
| 0.6111 | 5.0 | 3710 | 0.5966 | 5.4351 | |
|
| 0.5941 | 6.0 | 4452 | 0.5835 | 5.9868 | |
|
| 0.5613 | 7.0 | 5194 | 0.5753 | 6.4039 | |
|
| 0.5428 | 8.0 | 5936 | 0.5684 | 6.6599 | |
|
| 0.5315 | 9.0 | 6678 | 0.5607 | 6.8644 | |
|
| 0.5132 | 10.0 | 7420 | 0.5572 | 7.1633 | |
|
| 0.4958 | 11.0 | 8162 | 0.5534 | 7.2500 | |
|
| 0.4849 | 12.0 | 8904 | 0.5544 | 7.5064 | |
|
| 0.4731 | 13.0 | 9646 | 0.5502 | 7.6249 | |
|
| 0.4624 | 14.0 | 10388 | 0.5508 | 7.5880 | |
|
| 0.4482 | 15.0 | 11130 | 0.5503 | 7.7981 | |
|
| 0.4434 | 16.0 | 11872 | 0.5488 | 7.9009 | |
|
| 0.43 | 17.0 | 12614 | 0.5488 | 7.8955 | |
|
| 0.425 | 18.0 | 13356 | 0.5500 | 8.0053 | |
|
| 0.4177 | 19.0 | 14098 | 0.5460 | 8.1097 | |
|
| 0.4121 | 20.0 | 14840 | 0.5489 | 8.0999 | |
|
| 0.4124 | 21.0 | 15582 | 0.5498 | 8.1294 | |
|
| 0.4046 | 22.0 | 16324 | 0.5492 | 8.2079 | |
|
| 0.4011 | 23.0 | 17066 | 0.5493 | 8.2109 | |
|
| 0.4049 | 24.0 | 17808 | 0.5511 | 8.1965 | |
|
| 0.3964 | 25.0 | 18550 | 0.5513 | 8.1733 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|