arabic-hs-degree-prediction

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1882
  • Mse: 3.1882
  • Mae: 1.1956
  • R2: 0.5149
  • Accuracy: 0.4225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae R2 Accuracy
5.7507 0.1017 100 6.2822 6.2822 1.9385 0.0441 0.0830
5.299 0.2035 200 5.5817 5.5817 1.8516 0.1507 0.1395
5.53 0.3052 300 5.2052 5.2052 1.6906 0.2080 0.2566
4.8912 0.4069 400 4.8571 4.8571 1.6205 0.2610 0.2624
4.3919 0.5086 500 4.4455 4.4455 1.5954 0.3236 0.2740
4.4037 0.6104 600 4.2926 4.2926 1.5719 0.3469 0.2469
4.3753 0.7121 700 4.3337 4.3337 1.4822 0.3406 0.3190
3.9158 0.8138 800 4.3284 4.3284 1.4422 0.3414 0.3492
3.879 0.9156 900 3.9436 3.9436 1.4679 0.4000 0.2740
4.0891 1.0173 1000 3.7468 3.7468 1.4508 0.4299 0.2502
3.4442 1.1190 1100 3.8175 3.8175 1.4860 0.4191 0.2534
3.6186 1.2208 1200 3.6917 3.6917 1.4358 0.4383 0.2920
3.3972 1.3225 1300 3.5518 3.5518 1.3380 0.4596 0.3434
3.1744 1.4242 1400 3.6608 3.6608 1.4128 0.4430 0.3042
3.2872 1.5259 1500 3.4593 3.4593 1.3247 0.4736 0.3383
3.3208 1.6277 1600 3.4926 3.4926 1.3261 0.4686 0.3383
3.3749 1.7294 1700 3.4436 3.4436 1.2935 0.4760 0.3685
3.216 1.8311 1800 3.4275 3.4275 1.2742 0.4785 0.3711
2.9892 1.9329 1900 3.3504 3.3504 1.3199 0.4902 0.3222
2.9693 2.0346 2000 3.2945 3.2945 1.2992 0.4987 0.3434
2.7422 2.1363 2100 3.3692 3.3692 1.2683 0.4874 0.3865
2.6642 2.2380 2200 3.2903 3.2903 1.2463 0.4994 0.3910
2.6804 2.3398 2300 3.4485 3.4485 1.3091 0.4753 0.3659
2.8668 2.4415 2400 3.2589 3.2589 1.2682 0.5041 0.3698
2.9279 2.5432 2500 3.2159 3.2159 1.2381 0.5107 0.4006
2.5987 2.6450 2600 3.2272 3.2272 1.2692 0.5090 0.3621
2.5969 2.7467 2700 3.0977 3.0977 1.2095 0.5287 0.3923
2.603 2.8484 2800 3.2001 3.2001 1.2396 0.5131 0.3730
2.6199 2.9502 2900 3.3361 3.3361 1.3132 0.4924 0.3428
2.4894 3.0519 3000 3.0607 3.0607 1.2034 0.5343 0.3852
2.2048 3.1536 3100 3.3162 3.3162 1.3002 0.4954 0.3428
2.3359 3.2553 3200 3.1354 3.1354 1.1810 0.5229 0.4251
2.1222 3.3571 3300 3.1532 3.1532 1.1849 0.5202 0.4386
2.34 3.4588 3400 3.1854 3.1854 1.2317 0.5153 0.3749
2.1876 3.5605 3500 3.0598 3.0598 1.1787 0.5344 0.4174
2.3496 3.6623 3600 3.1563 3.1563 1.2685 0.5198 0.3312
2.2078 3.7640 3700 3.0814 3.0814 1.1775 0.5312 0.4322
2.2646 3.8657 3800 3.0456 3.0456 1.1873 0.5366 0.4006
2.2826 3.9674 3900 2.9952 2.9952 1.1629 0.5443 0.4232
2.2043 4.0692 4000 3.1038 3.1038 1.1657 0.5277 0.4412
2.0381 4.1709 4100 3.0986 3.0986 1.1875 0.5285 0.4077
1.771 4.2726 4200 3.1262 3.1262 1.1907 0.5243 0.4096
1.9437 4.3744 4300 3.0050 3.0050 1.1789 0.5428 0.4096
2.0255 4.4761 4400 3.0807 3.0807 1.1714 0.5313 0.4315
1.8701 4.5778 4500 3.1328 3.1328 1.1720 0.5233 0.4328
2.1164 4.6796 4600 3.1848 3.1848 1.1969 0.5154 0.4212
1.9437 4.7813 4700 3.0139 3.0139 1.1639 0.5414 0.4186
1.911 4.8830 4800 3.0545 3.0545 1.1866 0.5352 0.4013
2.0767 4.9847 4900 3.0239 3.0239 1.1791 0.5399 0.4122
1.5068 5.0865 5000 3.0965 3.0965 1.1789 0.5289 0.4264
1.6397 5.1882 5100 3.1433 3.1433 1.1853 0.5217 0.4154
1.7398 5.2899 5200 3.1553 3.1553 1.1764 0.5199 0.4367
1.703 5.3917 5300 3.1266 3.1266 1.1768 0.5243 0.4315
1.7731 5.4934 5400 3.2271 3.2271 1.2336 0.5090 0.3865
1.8083 5.5951 5500 3.3437 3.3437 1.2578 0.4912 0.3743
1.5717 5.6968 5600 3.1819 3.1819 1.1758 0.5158 0.4450
1.7819 5.7986 5700 3.0774 3.0774 1.1895 0.5318 0.4096
1.6773 5.9003 5800 3.3598 3.3598 1.2407 0.4888 0.3968
1.7355 6.0020 5900 3.1103 3.1103 1.1776 0.5268 0.4309
1.4878 6.1038 6000 3.3476 3.3476 1.2364 0.4906 0.4032
1.4709 6.2055 6100 3.0955 3.0955 1.1916 0.5290 0.4045
1.5061 6.3072 6200 3.0975 3.0975 1.1903 0.5287 0.4161
1.6804 6.4090 6300 3.1653 3.1653 1.2117 0.5184 0.4006
1.5214 6.5107 6400 3.1052 3.1052 1.1593 0.5275 0.4412
1.375 6.6124 6500 3.3933 3.3933 1.2594 0.4837 0.3788
1.5458 6.7141 6600 3.1259 3.1259 1.1923 0.5244 0.4135
1.3139 6.8159 6700 3.1141 3.1141 1.1774 0.5262 0.4257
1.3872 6.9176 6800 3.1789 3.1789 1.2179 0.5163 0.3949
1.5664 7.0193 6900 3.1296 3.1296 1.1811 0.5238 0.4264
1.3352 7.1211 7000 3.1715 3.1715 1.2001 0.5174 0.4077
1.4608 7.2228 7100 3.1279 3.1279 1.1844 0.5241 0.4264
1.3192 7.3245 7200 3.2494 3.2494 1.2249 0.5056 0.4026
1.3222 7.4262 7300 3.2562 3.2562 1.2057 0.5046 0.4199
1.3426 7.5280 7400 3.1636 3.1636 1.1844 0.5186 0.4225
1.1591 7.6297 7500 3.1366 3.1366 1.1895 0.5227 0.4167
1.3475 7.7314 7600 3.1563 3.1563 1.1891 0.5198 0.4193
1.3258 7.8332 7700 3.1369 3.1369 1.1841 0.5227 0.4225
1.4465 7.9349 7800 3.1352 3.1352 1.1856 0.5230 0.4232
1.4019 8.0366 7900 3.1505 3.1505 1.1820 0.5206 0.4315
1.2362 8.1384 8000 3.1832 3.1832 1.1930 0.5157 0.4270
1.3815 8.2401 8100 3.1928 3.1928 1.2023 0.5142 0.4161
1.2297 8.3418 8200 3.0869 3.0869 1.1768 0.5303 0.4232
1.2599 8.4435 8300 3.1602 3.1602 1.1933 0.5192 0.4116
1.3223 8.5453 8400 3.1198 3.1198 1.1772 0.5253 0.4277
1.262 8.6470 8500 3.1153 3.1153 1.1791 0.5260 0.4277
1.3021 8.7487 8600 3.2229 3.2229 1.2018 0.5096 0.4135
1.1122 8.8505 8700 3.1321 3.1321 1.1706 0.5234 0.4341
1.1733 8.9522 8800 3.1953 3.1953 1.2024 0.5138 0.4116
1.2663 9.0539 8900 3.1807 3.1807 1.1836 0.5160 0.4264
1.1937 9.1556 9000 3.1440 3.1440 1.1798 0.5216 0.4257
1.1342 9.2574 9100 3.1765 3.1765 1.1867 0.5167 0.4225
1.1479 9.3591 9200 3.1854 3.1854 1.1847 0.5153 0.4257
1.1885 9.4608 9300 3.2090 3.2090 1.1913 0.5117 0.4302
1.231 9.5626 9400 3.1888 3.1888 1.1956 0.5148 0.4167
1.1874 9.6643 9500 3.1671 3.1671 1.1905 0.5181 0.4244
1.1844 9.7660 9600 3.1895 3.1895 1.1938 0.5147 0.4219
1.1984 9.8678 9700 3.1726 3.1726 1.1896 0.5173 0.4225
1.1881 9.9695 9800 3.1882 3.1882 1.1956 0.5149 0.4225

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.20.3
Downloads last month
56
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HrantDinkFoundation/arabic-hs-degree-prediction

Finetuned
(12)
this model