arabic-hs-4class-prediction

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7358
  • Accuracy: 0.8029
  • Macro F1: 0.6756

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
0.9671 0.1147 100 0.8356 0.7075 0.3086
0.8352 0.2294 200 0.7748 0.7312 0.3898
0.7784 0.3440 300 0.7342 0.7341 0.3953
0.6864 0.4587 400 0.6894 0.7491 0.4471
0.7008 0.5734 500 0.6578 0.7763 0.5418
0.6343 0.6881 600 0.6414 0.7692 0.5089
0.6256 0.8028 700 0.6297 0.7699 0.5101
0.6397 0.9174 800 0.6173 0.7857 0.5482
0.6386 1.0321 900 0.6079 0.7821 0.5324
0.5845 1.1468 1000 0.6030 0.7799 0.5436
0.5638 1.2615 1100 0.5884 0.7735 0.5558
0.5811 1.3761 1200 0.5954 0.7885 0.5616
0.5892 1.4908 1300 0.5859 0.7900 0.6102
0.5539 1.6055 1400 0.5773 0.7871 0.6078
0.5866 1.7202 1500 0.5779 0.7935 0.6306
0.5884 1.8349 1600 0.5746 0.7885 0.6056
0.5502 1.9495 1700 0.5752 0.7935 0.6032
0.5369 2.0642 1800 0.5732 0.7928 0.6303
0.4772 2.1789 1900 0.5766 0.7928 0.6170
0.5344 2.2936 2000 0.5679 0.7978 0.6329
0.4929 2.4083 2100 0.5776 0.7821 0.6099
0.4743 2.5229 2200 0.6351 0.7978 0.6143
0.5125 2.6376 2300 0.5809 0.8014 0.6551
0.4917 2.7523 2400 0.5674 0.8007 0.6275
0.4894 2.8670 2500 0.5637 0.7907 0.6383
0.4739 2.9817 2600 0.5618 0.7971 0.6560
0.4364 3.0963 2700 0.5690 0.7964 0.6464
0.4021 3.2110 2800 0.5883 0.8043 0.6484
0.4382 3.3257 2900 0.6049 0.8086 0.6460
0.4441 3.4404 3000 0.5804 0.7950 0.6571
0.4514 3.5550 3100 0.6004 0.7842 0.6288
0.4783 3.6697 3200 0.5746 0.7921 0.6420
0.4358 3.7844 3300 0.5769 0.7957 0.6580
0.405 3.8991 3400 0.5888 0.8050 0.6580
0.4349 4.0138 3500 0.5718 0.8072 0.6692
0.3575 4.1284 3600 0.6027 0.7907 0.6561
0.3965 4.2431 3700 0.6006 0.7971 0.6677
0.396 4.3578 3800 0.6009 0.7928 0.6564
0.3564 4.4725 3900 0.6015 0.8043 0.6598
0.3921 4.5872 4000 0.6052 0.7978 0.6649
0.4333 4.7018 4100 0.6017 0.8029 0.6585
0.3763 4.8165 4200 0.6016 0.8007 0.6668
0.3518 4.9312 4300 0.6034 0.7950 0.6567
0.3347 5.0459 4400 0.6364 0.7921 0.6690
0.337 5.1606 4500 0.6507 0.8093 0.6680
0.3537 5.2752 4600 0.6392 0.8 0.6683
0.3433 5.3899 4700 0.6250 0.8 0.6714
0.3465 5.5046 4800 0.6334 0.7978 0.6742
0.3127 5.6193 4900 0.6433 0.7986 0.6716
0.3416 5.7339 5000 0.6328 0.7943 0.6629
0.3339 5.8486 5100 0.6271 0.8014 0.6708
0.3382 5.9633 5200 0.6418 0.7964 0.6684
0.3226 6.0780 5300 0.6600 0.7935 0.6721
0.3346 6.1927 5400 0.6494 0.7921 0.6724
0.3074 6.3073 5500 0.6533 0.7964 0.6795
0.2975 6.4220 5600 0.6606 0.7928 0.6693
0.3047 6.5367 5700 0.6683 0.8 0.6709
0.2818 6.6514 5800 0.6797 0.8022 0.6742
0.3164 6.7661 5900 0.6804 0.7950 0.6664
0.2959 6.8807 6000 0.6814 0.7957 0.6596
0.2941 6.9954 6100 0.6810 0.7935 0.6711
0.2954 7.1101 6200 0.6790 0.7892 0.6578
0.2615 7.2248 6300 0.6998 0.7993 0.6605
0.2395 7.3394 6400 0.7026 0.7957 0.6661
0.3184 7.4541 6500 0.7183 0.7785 0.6564
0.3012 7.5688 6600 0.6923 0.7921 0.6659
0.2446 7.6835 6700 0.6981 0.7986 0.6660
0.2895 7.7982 6800 0.6853 0.8014 0.6743
0.2854 7.9128 6900 0.6916 0.7978 0.6704
0.2599 8.0275 7000 0.6993 0.7957 0.6713
0.2405 8.1422 7100 0.7094 0.7935 0.6695
0.2445 8.2569 7200 0.7101 0.7950 0.6706
0.2537 8.3716 7300 0.7169 0.8036 0.6707
0.2573 8.4862 7400 0.7095 0.7971 0.6744
0.2316 8.6009 7500 0.7215 0.8007 0.6729
0.2726 8.7156 7600 0.7232 0.7971 0.6743
0.2371 8.8303 7700 0.7227 0.7964 0.6704
0.2554 8.9450 7800 0.7217 0.7986 0.6714
0.2284 9.0596 7900 0.7243 0.8036 0.6776
0.2442 9.1743 8000 0.7305 0.8022 0.6759
0.2369 9.2890 8100 0.7322 0.8022 0.6767
0.2769 9.4037 8200 0.7324 0.8057 0.6822
0.2417 9.5183 8300 0.7314 0.8007 0.6745
0.2529 9.6330 8400 0.7333 0.7971 0.6737
0.2441 9.7477 8500 0.7341 0.7964 0.6719
0.2272 9.8624 8600 0.7365 0.8014 0.6722
0.2208 9.9771 8700 0.7358 0.8029 0.6756

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
49
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HrantDinkFoundation/arabic-hs-4class-prediction

Finetuned
(12)
this model