arabic-hs-2class-prediction

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6540
  • Accuracy: 0.8442
  • Macro F1: 0.8331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
0.6218 0.1083 100 0.5720 0.6917 0.5951
0.5615 0.2167 200 0.5156 0.7297 0.6866
0.5132 0.3250 300 0.4785 0.7554 0.7400
0.4878 0.4334 400 0.4444 0.7879 0.7657
0.4623 0.5417 500 0.4162 0.8049 0.7858
0.4643 0.6501 600 0.4030 0.8042 0.7923
0.4455 0.7584 700 0.4118 0.8178 0.7969
0.4406 0.8667 800 0.3787 0.8320 0.8176
0.4145 0.9751 900 0.3786 0.8252 0.8136
0.4014 1.0834 1000 0.3790 0.8340 0.8174
0.3784 1.1918 1100 0.3703 0.8401 0.8285
0.3858 1.3001 1200 0.3651 0.8388 0.8290
0.3721 1.4085 1300 0.3605 0.8435 0.8323
0.3836 1.5168 1400 0.3604 0.8394 0.8312
0.3645 1.6251 1500 0.3658 0.8489 0.8343
0.375 1.7335 1600 0.3790 0.8347 0.8144
0.3909 1.8418 1700 0.3526 0.8469 0.8374
0.3566 1.9502 1800 0.3701 0.8482 0.8300
0.3243 2.0585 1900 0.3598 0.8388 0.8310
0.3699 2.1668 2000 0.3753 0.8340 0.8108
0.32 2.2752 2100 0.3541 0.8523 0.8408
0.2987 2.3835 2200 0.3588 0.8469 0.8370
0.3037 2.4919 2300 0.3687 0.8523 0.8398
0.3156 2.6002 2400 0.3522 0.8469 0.8378
0.3352 2.7086 2500 0.3440 0.8503 0.8415
0.3225 2.8169 2600 0.3490 0.8489 0.8394
0.3 2.9252 2700 0.3638 0.8476 0.8328
0.2795 3.0336 2800 0.3904 0.8482 0.8334
0.2787 3.1419 2900 0.4356 0.8415 0.8194
0.2733 3.2503 3000 0.3792 0.8530 0.8435
0.2765 3.3586 3100 0.3700 0.8496 0.8412
0.2746 3.4670 3200 0.3816 0.8476 0.8343
0.2823 3.5753 3300 0.3704 0.8503 0.8374
0.2726 3.6836 3400 0.3795 0.8516 0.8406
0.2661 3.7920 3500 0.4218 0.8469 0.8283
0.265 3.9003 3600 0.3852 0.8523 0.8425
0.2686 4.0087 3700 0.3782 0.8516 0.8428
0.2173 4.1170 3800 0.4008 0.8496 0.8401
0.2404 4.2254 3900 0.4072 0.8577 0.8453
0.2635 4.3337 4000 0.3811 0.8564 0.8464
0.1983 4.4420 4100 0.4038 0.8598 0.8506
0.2512 4.5504 4200 0.4228 0.8482 0.8343
0.2375 4.6587 4300 0.4070 0.8476 0.8359
0.2405 4.7671 4400 0.4433 0.8415 0.8242
0.2319 4.8754 4500 0.4176 0.8469 0.8370
0.2249 4.9837 4600 0.4342 0.8462 0.8361
0.1937 5.0921 4700 0.4543 0.8476 0.8369
0.2207 5.2004 4800 0.4553 0.8489 0.8357
0.1963 5.3088 4900 0.4779 0.8489 0.8331
0.178 5.4171 5000 0.4590 0.8455 0.8344
0.175 5.5255 5100 0.4663 0.8523 0.8421
0.1999 5.6338 5200 0.4733 0.8523 0.8413
0.2018 5.7421 5300 0.4649 0.8523 0.8411
0.208 5.8505 5400 0.4617 0.8482 0.8368
0.2096 5.9588 5500 0.4561 0.8482 0.8379
0.1972 6.0672 5600 0.5073 0.8476 0.8331
0.1815 6.1755 5700 0.4908 0.8469 0.8358
0.1625 6.2839 5800 0.5171 0.8435 0.8298
0.1869 6.3922 5900 0.5083 0.8462 0.8346
0.1672 6.5005 6000 0.4982 0.8509 0.8405
0.1757 6.6089 6100 0.5455 0.8462 0.8307
0.1505 6.7172 6200 0.5220 0.8428 0.8313
0.1455 6.8256 6300 0.5378 0.8428 0.8318
0.2074 6.9339 6400 0.5219 0.8442 0.8336
0.1551 7.0423 6500 0.5336 0.8394 0.8287
0.1501 7.1506 6600 0.5581 0.8435 0.8323
0.167 7.2589 6700 0.5594 0.8408 0.8290
0.1559 7.3673 6800 0.5704 0.8449 0.8313
0.1676 7.4756 6900 0.5758 0.8455 0.8319
0.134 7.5840 7000 0.5662 0.8482 0.8371
0.1773 7.6923 7100 0.5677 0.8435 0.8323
0.1328 7.8007 7200 0.5843 0.8482 0.8363
0.1241 7.9090 7300 0.5901 0.8435 0.8332
0.1657 8.0173 7400 0.6129 0.8374 0.8281
0.1348 8.1257 7500 0.6221 0.8442 0.8340
0.1414 8.2340 7600 0.6272 0.8421 0.8319
0.1166 8.3424 7700 0.6430 0.8428 0.8324
0.1648 8.4507 7800 0.6359 0.8489 0.8376
0.1359 8.5590 7900 0.6338 0.8476 0.8367
0.16 8.6674 8000 0.6433 0.8421 0.8293
0.1256 8.7757 8100 0.6438 0.8455 0.8339
0.1673 8.8841 8200 0.6452 0.8428 0.8304
0.151 8.9924 8300 0.6377 0.8394 0.8281
0.1381 9.1008 8400 0.6409 0.8442 0.8318
0.1199 9.2091 8500 0.6336 0.8408 0.8303
0.1052 9.3174 8600 0.6434 0.8401 0.8286
0.14 9.4258 8700 0.6460 0.8421 0.8310
0.1357 9.5341 8800 0.6503 0.8428 0.8310
0.1149 9.6425 8900 0.6580 0.8428 0.8301
0.1486 9.7508 9000 0.6552 0.8442 0.8322
0.1315 9.8592 9100 0.6518 0.8442 0.8335
0.1125 9.9675 9200 0.6540 0.8442 0.8331

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HrantDinkFoundation/arabic-hs-2class-prediction

Finetuned
(12)
this model