combined_sft_10000_mcq_2epoch

This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the combined_10000_mcq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 40
  • total_eval_batch_size: 40
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.0044 0.0667 30 0.0043
0.0039 0.1333 60 0.0039
0.0039 0.2 90 0.0038
0.0038 0.2667 120 0.0039
0.0038 0.3333 150 0.0037
0.0036 0.4 180 0.0034
0.0034 0.4667 210 0.0033
0.0028 0.5333 240 0.0027
0.0026 0.6 270 0.0024
0.0022 0.6667 300 0.0022
0.0025 0.7333 330 0.0020
0.0019 0.8 360 0.0019
0.0021 0.8667 390 0.0018
0.0017 0.9333 420 0.0017
0.0017 1.0 450 0.0017
0.0017 1.0667 480 0.0017
0.0015 1.1333 510 0.0016
0.0015 1.2 540 0.0016
0.0014 1.2667 570 0.0016
0.0017 1.3333 600 0.0014
0.0014 1.4 630 0.0014
0.0012 1.4667 660 0.0013
0.0012 1.5333 690 0.0013
0.0012 1.6 720 0.0012
0.0011 1.6667 750 0.0012
0.0009 1.7333 780 0.0011
0.0012 1.8 810 0.0011
0.0012 1.8667 840 0.0011
0.0012 1.9333 870 0.0011
0.001 2.0 900 0.0011

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Howard881010/combined_sft_10000_mcq_2epoch