|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- HoangHa/Pensez-v0.1 |
|
language: |
|
- en |
|
- fr |
|
base_model: |
|
- Qwen/Qwen2.5-7B-Instruct |
|
--- |
|
|
|
<div align="center"> |
|
|
|
# Pensez: Less Data, Better Reasoning – Rethinking French LLM |
|
|
|
[**About**](#about) | [**How to Run Locally**](#run-locally) | [**Models and Datasets**](#models-and-datasets) | [**Benchmarks**](#benchmarks) | [**Training Details**](#training-details) |
|
|
|
|
|
 |
|
|
|
</div> |
|
|
|
## About |
|
|
|
Paper: [Pensez: Less Data, Better Reasoning - Rethinking French LLM](https://arxiv.org/abs/2503.13661) |
|
|
|
Pensez is a bilingual (French-English) reasoning model designed to maximize efficiency with significantly reduced training data. The model leverages a curated dataset focusing on daily reasoning tasks and scientific questions to enhance performance. |
|
|
|
Key strategies for improved reasoning: |
|
- **Concise reasoning** for simple tasks to prevent overthinking. |
|
- **Extended reasoning** for complex domains like mathematics, coding, and science. |
|
- **Special tokens (`<think>...</think>`)** to explicitly guide the model’s reasoning process. |
|
|
|
These optimizations result in superior reasoning capabilities while maintaining robust general understanding compared to models like [DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B). |
|
|
|
## Models and Datasets |
|
|
|
### Model Versions |
|
|
|
Pensez is built upon [Qwen 2.5 Instruct 7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and trained over five epochs. |
|
|
|
| Model | Backbone | Size | Download Link | |
|
|---------------|----------------------------------------|------|---------------| |
|
| Pensez-v0.1-e1 | Qwen2.5-7B-Instruct | 7B | [🤗 Pensez-v0.1-e1](https://huggingface.co/HoangHa/Pensez-v0.1-e1) | |
|
| Pensez-v0.1-e2 | Qwen2.5-7B-Instruct | 7B | [🤗 Pensez-v0.1-e2](https://huggingface.co/HoangHa/Pensez-v0.1-e2) | |
|
| Pensez-v0.1-e3 | Qwen2.5-7B-Instruct | 7B | [🤗 Pensez-v0.1-e3](https://huggingface.co/HoangHa/Pensez-v0.1-e3) | |
|
| Pensez-v0.1-e4 | Qwen2.5-7B-Instruct | 7B | [🤗 Pensez-v0.1-e4](https://huggingface.co/HoangHa/Pensez-v0.1-e4) | |
|
| Pensez-v0.1-e5 | Qwen2.5-7B-Instruct | 7B | [🤗 Pensez-v0.1-e5](https://huggingface.co/HoangHa/Pensez-v0.1-e5) | |
|
|
|
### Dataset |
|
|
|
Pensez was trained on the hand-curated [Pensez v0.1](https://huggingface.co/datasets/HoangHa/Pensez-v0.1) dataset containing 2,000 samples (1,000 French, 1,000 English). |
|
|
|
| Dataset | Description | Size | Link | |
|
|--------------|----------------------|-------|-------| |
|
| Pensez v0.1 | SFT Training Dataset | 2K samples | [🤗 Pensez v0.1](https://huggingface.co/datasets/HoangHa/Pensez-v0.1) | |
|
|
|
## Benchmarks |
|
|
|
Pensez was evaluated on French-specific benchmarks, demonstrating strong reasoning ability and improved task-specific performance: |
|
|
|
| Benchmark | Pensez-v0.1-e5 | DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-7B-Instruct | |
|
|-----------|---------------|-----------------------------|----------------------| |
|
| Math-hard (fr) | 0.3458 | 0.3403 | 0.2253 | |
|
| MMLU (fr) | 0.5766 | 0.4961 | 0.6612 | |
|
| BoolQA (fr) | 0.9157 | 0.7079 | 0.9382 | |
|
| Trivia (en) | 0.4421 | 0.2711 | 0.5316 | |
|
| HellaSwag (en) | 0.5050 | 0.3540 | 0.5258 | |
|
|
|
**Key Observations:** |
|
- Pensez outperforms Qwen2.5-7B-Instruct in reasoning tasks. |
|
- Comparable to DeepSeek-R1-Distill-Qwen-7B in reasoning while maintaining strong understanding. |
|
- Reduced degradation in knowledge-based tasks. |
|
|
|
<details> |
|
<summary>Click for detailed benchmark results</summary> |
|
|
|
| Tasks | Pensez v0.1 e1 | Pensez v0.1 e2 | Pensez v0.1 e3 | Pensez v0.1 e4 | Pensez v0.1 e5 | Qwen 7B instruct | R1 distil | |
|
|------------------------------------------------|---------------|---------------|---------------|---------------|---------------|-----------------|-----------| |
|
| leaderboard_math_hard_fr | 0.0918 | 0.2547 | 0.2783 | 0.3035 | 0.3458 | 0.2253 | 0.3403 | |
|
| leaderboard_math_algebra_hard_fr | 0.1029 | 0.3914 | 0.3971 | 0.5114 | 0.5000 | 0.4229 | 0.4771 | |
|
| leaderboard_math_counting_and_prob_hard_fr | 0.0765 | 0.1378 | 0.1939 | 0.2041 | 0.2398 | 0.1224 | 0.2347 | |
|
| leaderboard_math_geometry_hard_fr | 0.0388 | 0.1019 | 0.1408 | 0.1359 | 0.1748 | 0.1019 | 0.2330 | |
|
| leaderboard_math_num_theory_hard_fr | 0.1198 | 0.2581 | 0.3502 | 0.3548 | 0.4332 | 0.3180 | 0.3963 | |
|
| leaderboard_math_prealgebra_hard_fr | 0.1681 | 0.4425 | 0.4690 | 0.4956 | 0.5841 | 0.3274 | 0.4867 | |
|
| leaderboard_math_precalculus_hard_fr | 0.0357 | 0.0714 | 0.1190 | 0.1190 | 0.1429 | 0.0595 | 0.2143 | |
|
| leaderboard_mmlu_fr | 0.3806 | 0.3329 | - | - | 0.5766 | 0.6612 | 0.4961 | |
|
| french_bench_arc_challenge | 0.5047 | 0.5021 | 0.4919 | 0.4859 | 0.4842 | 0.5518 | 0.3447 | |
|
| french_bench_boolqa | 0.9326 | 0.9326 | 0.9326 | 0.9270 | 0.9157 | 0.9382 | 0.7079 | |
|
| french_bench_fquadv2 | 0.4325 | 0.4400 | 0.4412 | 0.4375 | 0.4387 | 0.4800 | 0.2988 | |
|
| french_bench_hellaswag | 0.4970 | 0.5055 | 0.5092 | 0.5058 | 0.5050 | 0.5258 | 0.3540 | |
|
| french_bench_trivia | 0.4763 | 0.4763 | 0.4553 | 0.4395 | 0.4421 | 0.5316 | 0.2711 | |
|
|
|
</details> |
|
|
|
## Run Locally |
|
|
|
You can run Pensez using Hugging Face’s `transformers` library: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_path = "HoangHa/Pensez-v0.1-e5" |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float16, device_map="auto" |
|
) |
|
|
|
# Example input |
|
messages = [{"role": "user", "content": "Bonjour!"}] |
|
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda") |
|
|
|
generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True) |
|
print(f"Réponse: {response}") |
|
``` |
|
|
|
## Training Details |
|
|
|
Pensez was trained with: |
|
- **Packing Inputs Without Cross-Contamination Attention** ([Reference](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)) |
|
- **Liger Kernel** ([Reference](https://github.com/linkedin/Liger-Kernel)) |
|
- **DeepSpeed 3** ([Reference](https://github.com/deepspeedai/DeepSpeed)) |
|
- **NEFTune Noise** ([Reference](https://arxiv.org/abs/2310.05914)) for robustness. |
|
|
|
| **Parameter** | **Value** | |
|
|--------------|----------| |
|
| Epochs | 5 | |
|
| Global Batch Size | 200 | |
|
| Learning Rate | 1e-5 | |
|
| Scheduler | Cosine | |
|
| Optimizer | AdamW | |
|
| Warmup Ratio | 0.05 | |
|
| Weight Decay | 0.01 | |
|
| Max Sequence Length | 16,384 | |
|
|
|
More details: [Training Config](https://huggingface.co/HoangHa/Pensez-v0.1-e5/blob/main/fr_full_sft.yaml) | Loss curves: [Wandb](https://wandb.ai/hahuyhoanghhh41/llamafactory?nw=nwuserhahuyhoanghhh41) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{ha2025pensezreasoningfrenchllm, |
|
title={Pensez: Less Data, Better Reasoning – Rethinking French LLM}, |
|
author={Ha Huy Hoang}, |
|
year={2025}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={}, |
|
} |
|
``` |
|
|
|
|
|
## Acknowledgement |
|
|
|
- [llama-factory](https://github.com/hiyouga/LLaMA-Factory) |
|
- [Deepseek R1](https://github.com/deepseek-ai/DeepSeek-R1) |
|
- [Qwen 2.5](https://github.com/QwenLM/Qwen2.5) |
|
- [NEFTune Noise](https://arxiv.org/abs/2310.05914) |
|
- [Packing Inputs Without Cross-Contamination Attention](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing) |
|
- [Liger Kernel](https://github.com/linkedin/Liger-Kernel) |
|
- [Deepspeed](https://github.com/deepspeedai/DeepSpeed) |
|
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) |
|
- [Hyperbolic](https://hyperbolic.xyz/) |
|
- [Modal](https://modal.com/) |