Uploaded model
- Developed by: HiroSan6595
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample Use
以下elyza-tasks-100-TV_0.jsonlの回答のためのコード
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U xformers --index-url https://download.pytorch.org/whl/cu124
!pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from unsloth import FastLanguageModel
import torch
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は8Bクラスのモデルを扱うためTrue
model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-finetune-2" #Fine-Tuningしたモデルにつけたい名前
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
model,
r = 32,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
max_seq_length = max_seq_length,
)
HF_TOKEN = "mytoken"
"""
dataset: 学習に用いるデータセット
ベースコードでは以下のリンクからデータをダウンロードして使います。zipを展開(!unzip)してデータのパスを指定してください。
(https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/)
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎.
ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。
"""
from datasets import load_dataset
dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json")
dataset
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
input = examples["text"] # 入力データ
output = examples["output"] # 出力データ
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass
# # 各データにフォーマットを適用
dataset = dataset.map(
formatting_prompts_func,
num_proc= 4, # 並列処理数を指定
)
dataset
print(dataset["train"]["formatted_text"][3])
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset=dataset["train"],
max_seq_length = max_seq_length,
dataset_text_field="formatted_text",
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
eval_steps=0.2,
logging_steps = 10,
warmup_steps = 10,
save_steps=100,
save_total_limit=2,
max_steps=-1,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
group_by_length=True,
seed = 3407,
output_dir = "outputs",
),
)
trainer_stats = trainer.train()
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
trainer_stats = trainer.train()
model.push_to_hub_merged(
new_model_id,
tokenizer=tokenizer,
# save_method="lora",
token=HF_TOKEN,
private=True
)
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for HiroSan6595/llm-jp-3-13b-finetune-2
Base model
llm-jp/llm-jp-3-13b