|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
datasets: |
|
- HiTZ/MedExpQA |
|
language: |
|
- en |
|
- fr |
|
- it |
|
- es |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<p align="center"> |
|
<br> |
|
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;"> |
|
<br> |
|
|
|
# Mistral 7B fine-tuned for Medical QA in MedExpQA benchmark |
|
|
|
We provide a [Mistral7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) fine-tuned model on [MedExpQA, the first multilingual benchmark for Medical QA which includes |
|
reference gold explanations](https://huggingface.co/datasets/HiTZ/MedExpQA). |
|
|
|
The model has been fine-tuned using the Clinical Case and Question + automatically obtained RAG using [the MedCorp and MedRAG method](https://arxiv.org/pdf/2402.13178v1) |
|
with 32 snippets. The model generates as output a prediction of the correct answer to the multiple choice exam and has been evaluated on 4 languages: English, French, Italian and Spanish. |
|
|
|
|
|
- 📖 Paper: [MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering](https://arxiv.org/abs/2404.05590v1) |
|
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote) |
|
- 💻 Code: [https://github.com/hitz-zentroa/MedExpQA/](https://github.com/hitz-zentroa/MedExpQA/) |
|
|
|
For details about fine-tuning and evaluation please check the paper and the repository for usage. |
|
|
|
|
|
# Model Description |
|
|
|
- **Developed by**: Iñigo Alonso, Maite Oronoz, Rodrigo Agerri |
|
- **Contact**: [Iñigo Alonso](https://hitz.ehu.eus/en/node/282) and [Rodrigo Agerri](https://ragerri.github.io/) |
|
- **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote) |
|
- **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR |
|
- **Model type**: text-generation |
|
- **Language(s) (NLP)**: English, Spanish, French, Italian |
|
- **License**: apache-2.0 |
|
- **Finetuned from model**: mistralai/Mistral-7B-v0.1 |
|
|
|
## Citation |
|
|
|
If you use MedExpQA data then please **cite the following paper**: |
|
|
|
```bibtex |
|
@misc{alonso2024medexpqa, |
|
title={MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering}, |
|
author={Iñigo Alonso and Maite Oronoz and Rodrigo Agerri}, |
|
year={2024}, |
|
eprint={2404.05590}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
```` |