hex-rvc / app.py
Hev832's picture
Update app.py
1ec8ae7 verified
raw
history blame
11.1 kB
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from scipy.signal import convolve
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import shutil
import time
from argparse import ArgumentParser
from download_model import download_online_model
main_dir = Path().resolve()
print(main_dir)
os.chdir(main_dir)
models_dir = main_dir / "rvc_models"
audio_separat_dir = main_dir / "audio_input"
AUDIO_DIR = main_dir / 'audio_input'
# Function to list all folders in the models directory
def get_folders():
if models_dir.exists() and models_dir.is_dir():
return [folder.name for folder in models_dir.iterdir() if folder.is_dir()]
return []
# Function to refresh and return the list of folders
def refresh_folders():
return gr.Dropdown.update(choices=get_folders())
# Function to get the list of audio files in the specified directory
def get_audio_files():
if not os.path.exists(AUDIO_DIR):
os.makedirs(AUDIO_DIR)
return [f for f in os.listdir(AUDIO_DIR) if f.lower().endswith(('.mp3', '.wav', '.flac', '.ogg', '.aac'))]
# Function to return the full path of audio files for playback
def load_audio_files():
audio_files = get_audio_files()
return [os.path.join(AUDIO_DIR, f) for f in audio_files]
def refresh_audio_list():
audio_files = load_audio_files()
return gr.Dropdown.update(choices=audio_files)
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
return file_path
async def text_to_speech_edge(text, language_code):
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# Function to apply a basic reverb effect using convolution
def add_simple_reverb(input_audio):
# Load the uploaded audio file using pydub
sound = AudioSegment.from_file(input_audio)
# Convert AudioSegment to numpy array
samples = np.array(sound.get_array_of_samples())
# Define a simple impulse response for reverb (can be customized)
impulse_response = np.concatenate([np.zeros(5000), np.array([0.5**i for i in range(1000)])])
# Apply convolution (reverb effect)
reverbed_samples = convolve(samples, impulse_response, mode='full')
reverbed_samples = reverbed_samples[:len(samples)] # trim to original length
# Convert numpy array back to AudioSegment
reverbed_sound = sound._spawn(reverbed_samples.astype(np.int16).tobytes())
# Export the reverbed sound to a new file-like object (in-memory)
output_path = "vocals_with_reverb.wav"
reverbed_sound.export(output_path, format='wav')
return output_path
# Ensure this function is defined before your Gradio Blocks UI
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):
# If no sound path is given, use the uploaded file
if not SOUND_PATH and upload_audio is not None:
SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
with open(SOUND_PATH, "wb") as f:
f.write(upload_audio.read())
# Check if a model name is provided
if not MODEL_NAME:
return "Please provide a model name."
# Run the inference process
os.system("chmod +x stftpitchshift")
inferred_audio = infer_audio(
MODEL_NAME,
SOUND_PATH,
F0_CHANGE,
F0_METHOD,
MIN_PITCH,
MAX_PITCH,
CREPE_HOP_LENGTH,
INDEX_RATE,
FILTER_RADIUS,
RMS_MIX_RATE,
PROTECT,
SPLIT_INFER,
MIN_SILENCE,
SILENCE_THRESHOLD,
SEEK_STEP,
KEEP_SILENCE,
FORMANT_SHIFT,
QUEFRENCY,
TIMBRE,
F0_AUTOTUNE,
OUTPUT_FORMAT
)
return inferred_audio
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False)
parser.add_argument("--listen", action="store_true", default=False)
parser.add_argument('--listen-host', type=str)
parser.add_argument('--listen-port', type=int)
args = parser.parse_args()
# Gradio Interface
with gr.Blocks(title="Hex RVC", theme=gr.themes.Base(primary_hue="red", secondary_hue="pink")) as app:
gr.Markdown("# Hex RVC - AI Audio Inference")
gr.Markdown("Join [AIHub](https://discord.gg/aihub) to get the RVC model!")
# Inference Tab with Priority on Settings
with gr.Tab("Inference"):
gr.Markdown("## Inference Settings")
with gr.Row():
MODEL_NAME = gr.Dropdown(
label="Select AI Model",
choices=get_folders(),
interactive=True,
info="Choose a pre-trained model for audio processing"
)
SOUND_PATH = gr.Dropdown(
choices=load_audio_files(),
label="Select Existing Audio File",
interactive=True,
info="Pick an audio file from the predefined directory"
)
upload_audio = gr.Audio(
label="Upload Your Own Audio",
type='filepath',
info="Upload an audio file if not using existing ones"
)
gr.Markdown("### Conversion Parameters")
with gr.Accordion("Conversion Settings", open=True):
with gr.Row():
F0_CHANGE = gr.Number(
label="Pitch Change (semitones)",
value=0,
info="Adjust the pitch of the output audio"
)
F0_METHOD = gr.Dropdown(
choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "rmvpe_legacy", "fcpe", "fcpe_legacy", "hybrid[rmvpe+fcpe]"],
label="F0 Method",
value="fcpe",
info="Select the fundamental frequency extraction method"
)
with gr.Row():
MIN_PITCH = gr.Number(label="Min Pitch", value=50, info="Minimum pitch detection threshold")
MAX_PITCH = gr.Number(label="Max Pitch", value=1100, info="Maximum pitch detection threshold")
CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120, info="Hop length for Crepe method")
INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
FILTER_RADIUS = gr.Number(label="Filter Radius", value=3, info="Filter intensity for smoothing")
RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
PROTECT = gr.Slider(label="Protect Factor", minimum=0, maximum=1, value=0.33)
gr.Markdown("## Generate Audio")
output_audio = gr.Audio(label="Generated Audio Output", type='filepath')
with gr.Row():
refresh_btn = gr.Button("Refresh Lists")
run_button = gr.Button("Run Inference")
# Refresh Button for Updating Model and Audio Choices
refresh_btn.click(
lambda: (refresh_audio_list(), refresh_folders()),
outputs=[SOUND_PATH, MODEL_NAME]
)
# Run Inference and Display Result
run_button.click(
fn=process_audio,
inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio],
outputs=output_audio
)
# Other Tabs (Download Model, Audio Separation)
with gr.Tab("Download RVC Model"):
gr.Markdown("## Download RVC Model")
url = gr.Textbox(label="Model URL")
dirname = gr.Textbox(label="Model Directory Name")
download_button = gr.Button("Download Model")
download_output = gr.Textbox(label="Download Status")
download_button.click(
download_online_model,
inputs=[url, dirname],
outputs=download_output
)
with gr.Tab("Audio Effect (demo)"):
input_audio = gr.Textbox(label="Path Audio File")
output_audio = gr.Audio(type="filepath", label="Processed Audio with Reverb")
reverb_btn = gr.Button("Add Reverb")
reverb_btn.click(add_simple_reverb, inputs=input_audio, outputs=output_audio)
with gr.Tab("Audio Separation"):
gr.Markdown("## Audio Separation")
input_audio = gr.Audio(type="filepath", label="Upload Audio for Separation")
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
roformer_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
roformer_download_button = gr.Button(
"Download!",
variant = "primary"
)
separate_button = gr.Button("Separate Audio")
separation_output = gr.Textbox(label="Separation Output Path")
roformer_download_button.click(download_audio, [roformer_link], [input_audio])
separate_button.click(
fn=separate_audio,
inputs=[input_audio, "model_bs_roformer_ep_317_sdr_12.9755.ckpt",
"UVR-DeEcho-DeReverb.pth",
"mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt"],
outputs=[separation_output]
)
app.launch(
share=args.share_enabled,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port
)